Answer:
A unit rate is the rate of change in a relationship where the rate is per 1.
The rate of change is the ratio between the x and y (or input and output) values in a relationship. Another term for the rate of change for proportional relationships is the constant of proportionality.
If the rate of change is yx, then so is the constant of proportionality. To simplify things, we set yx=k, where k represents the constant of proportionality.
If you solve a yx=k equation for y, (like this: y=kx), it is called a direct variation equation. In a direct variation equation, y varies directly with x. When x increases or decreases, y also increases or decreases by the same proportion.
To find y in a direct variation equation, multiply x by the constant of proportionality, k.
For example: Given the relationship y=7x, the constant of proportionality k=7, so if x=3, then y=3×7 or 21.
Given the same relationship, if x=7, then y=7×7, or 49.
Step-by-step explanation:
Answer:
The breadth of the triangle is 8 inches.
Step-by-step explanation:
Given that the area of the triangle is 24 sq inches and that the height is 6 inches
1/2 * b * 6 =24
b * 3= 24
b=8 inches
Answer:
b
Step-by-step explanation:
I think it's SAS
It is because O is the common angle and the two sides are similar.
Answer:
a) the probability that the minimum of the three is between 75 and 90 is 0.00072
b) the probability that the second smallest of the three is between 75 and 90 is 0.396
Step-by-step explanation:
Given that;
fx(x) = { 1/5 ; 50 < x < 100
0, otherwise}
Fx(x) = { x-50 / 50 ; 50 < x < 100
1 ; x > 100
a)
n = 3
F(1) (x) = nf(x) ( 1-F(x)^n-1
= 3 × 1/50 ( 1 - ((x-50)/50)²
= 3/50 (( 100 - x)/50)²
=3/50³ ( 100 - x)²
Therefore P ( 75 < (x) < 90) = ⁹⁰∫₇₅ 3/50³ ( 100 - x)² dx
= 3/50³ [ -2 (100 - x ]₇₅⁹⁰
= (3 ( -20 + 50)) / 50₃
= 9 / 12500 = 0.00072
b)
f(k) (x) = nf(x) ( ⁿ⁻¹_k₋ ₁) ( F(x) )^k-1 ; ( 1 - F(x) )^n-k
Now for n = 3, k = 2
f(2) (x) = 3f(x) × 2 × (x-50 / 50) ( 1 - (x-50 / 50))
= 6 × 1/50 × ( x-50 / 50) ( 100-x / 50)
= 6/50³ ( 150x - x² - 5000 )
therefore
P( 75 < x2 < 90 ) = 6/50³ ⁹⁰∫₇₅ ( 150x - x² - 5000 ) dx
= 99 / 250 = 0.396