Multiplying and dividing with conjugate of 2+i in the given expression, we get(3+ 4i)(2-i)/(2+i)(2-i)=(6-3i+8i-4i^2)/(4-i^2)=(10+5i)/(4+1)=(10+5i)/5=2+i=a+bi<span>Thus a=2</span>
Answer:
B)y = 3x^2 - 3x-18
Step-by-step explanation:
y = (3x – 9)(x + 2)
y = 3x*x+3x*2-9*x-9*2
y = 3x^2 +6x-9x-18
y = 3x^2 - 3x-18
Answer:
<em>3x + 2y = -2 </em>
Step-by-step explanation:
<em>Given Equation is</em> <em>−
2
x + 3
y = 12</em>
3
y =
2
x + 12
y
= (
2
/3
) y + 12
<em />
<em>Slope of this line is </em><em>m = 2/
3
</em>
<em>
Slope of Line A </em><em>
m
a = 2
</em>
<em>
Slope of Line B </em><em>m
b = 2/
3
</em>
<em>
Slope of Line C </em><em>m
c = −
(
2
/3
)
</em>
<em>
Slope of Line D</em> <em>m
d = − (
3
/2
)
</em>
since m
d = −
1
/m , <em>D</em> is perpendicular to the given line
Answer:
x²-5x+6
Step-by-step explanation:
The question is to find product in : x(x-2)+3(2-x)-----------(a)
Make terms in brackets same by introducing a negative sign as;
Collect like terms as : x(x-2) - 3 (x-2)------------ (b)
Note that expression (a) is similar to (b)
Factorize equation (b) as : (x-3)(x-2)
Distribute as : x(x-2) -3 (x-2 ) ------ x²-2x-3x+6
Collect like terms as: x²-5x+6
Final expression : x²-5x+6
Testing with x=5 in original expression
x(x-2)+3(2-x)
5(5-2)+3(2-5)
25-10+6-15
25+6-10-15
31-10-15=6
Using the final expression;
x²-5x+6
5²-5(5)+6
25-25+6
=6