Answer:
13
Step-by-step explanation:
Equation: a^2 + b^2 = c^2
5^2 + 12^2 = c^2
25 + 144 = c^2
169 = c^2 also equals (the square root of 169 = c)
The square root of 169 = 13
C = 13
Answer:
32767 distinct color grouping
Step-by-step explanation:
Given data:
Total tube is 13
for distinct color, group can be 1,2,3,4,.... 15
For total number of ways we have following relation
![^nC_0 +^nC_1 +^nC_2 + .......^nC_n = 2^n](https://tex.z-dn.net/?f=%5EnC_0%20%2B%5EnC_1%20%2B%5EnC_2%20%2B%20.......%5EnC_n%20%3D%202%5En)
here n = 13 so we have
![^15C_0 +^15C_1 +^15C_2 + .......^15C_{15} = 2^15](https://tex.z-dn.net/?f=%5E15C_0%20%2B%5E15C_1%20%2B%5E15C_2%20%2B%20.......%5E15C_%7B15%7D%20%3D%202%5E15)
for at least one
![= 2^{15} - 1](https://tex.z-dn.net/?f=%3D%202%5E%7B15%7D%20-%201)
![= 32768 -1](https://tex.z-dn.net/?f=%3D%2032768%20-1)
= 32767 distinct color grouping
Answer:
256.4
Step-by-step explanation:
Let;
A(-8,6) B(6,6) C(6, -4) D(-8, -4)
Let's find the length AB
x₁= -8 y₁=6 x₂=6 y₂=6
We will use the distance formula;
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
![=\sqrt[]{(6+8)^2+(6-6)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%286%2B8%29%5E2%2B%286-6%29%5E2%7D)
![=\sqrt[]{14^2+0}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B14%5E2%2B0%7D)
![=14](https://tex.z-dn.net/?f=%3D14)
Next, we will find the width BC
B(6,6) C(6, -4)
x₁= 6 y₁=6 x₂=6 y₂=-4
substitute into the distance formula;
![d=\sqrt[]{(6-6)^2+(-4-6)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%286-6%29%5E2%2B%28-4-6%29%5E2%7D)
![=\sqrt[]{(-10)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%28-10%29%5E2%7D)
![=\sqrt[]{100}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B100%7D)
![=10](https://tex.z-dn.net/?f=%3D10)
Area = l x w
= 14 x 10
= 140 square units
Line CB touches circle A only at one point (point B), hence CB is a tangent.
<h3>What is a
circle?</h3>
A circle is the locus of a point such that its distance from a fixed point (center) is always constant.
When a line intersects a circle in exactly one point the line is said to be tangent to the circle
Hence since Line CB touches circle A only at one point (point B), hence CB is a tangent.
Find out more on circle at: brainly.com/question/24375372