The function represents a <em>cosine</em> graph with axis at y = - 1, period of 6, and amplitude of 2.5.
<h3>How to analyze sinusoidal functions</h3>
In this question we have a <em>sinusoidal</em> function, of which we are supposed to find the following variables based on given picture:
- Equation of the axis - Horizontal that represents the mean of the bounds of the function.
- Period - Horizontal distance needed between two maxima or two minima.
- Amplitude - Mean of the difference of the bounds of the function.
- Type of sinusoidal function - The function represents either a sine or a cosine if and only if trigonometric function is continuous and bounded between - 1 and 1.
Then, we have the following results:
- Equation of the axis: y = - 1
- Period: 6
- Amplitude: 2.5
- The graph may be represented by a cosine with no <em>angular</em> phase and a sine with <em>angular</em> phase, based on the following trigonometric expression:
cos θ = sin (θ + π/2)
To learn more on sinusoidal functions: brainly.com/question/12060967
#SPJ1
Answer:
-1
Step-by-step explanation:
This all comes down to the substitution. I am assuming that (4x2) is meant to be 4x^2 so I will solve as that.
4(-2)^2 = 4(4) = 16
4(-2) = - 8
-2(3)^2 = -2(9) = -18
3(3) = 9
16-8-18+9= -1
Answer:
x = 6
Step-by-step explanation:
12x+252=324
Subtract 252 from each side
12x+252-252=324-252
12x =72
Divide each side by 12
12x/12 = 72/12
x =6
Answer:
c = 0.165
Step-by-step explanation:
Given:
f(x, y) = cx y(1 + y) for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 3,
f(x, y) = 0 otherwise.
Required:
The value of c
To find the value of c, we make use of the property of a joint probability distribution function which states that

where a and b represent -infinity to +infinity (in other words, the bound of the distribution)
By substituting cx y(1 + y) for f(x, y) and replacing a and b with their respective values, we have

Since c is a constant, we can bring it out of the integral sign; to give us

Open the bracket

Integrate with respect to y

Substitute 0 and 3 for y



Add fraction


Rewrite;

The
is a constant, so it can be removed from the integral sign to give


Integrate with respect to x

Substitute 0 and 3 for x




Multiply both sides by 

