1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
strojnjashka [21]
3 years ago
5

Test again help please

Mathematics
2 answers:
tekilochka [14]3 years ago
5 0

Answer:

19

Step-by-step explanation:

1. one line = 180 degrees --> (4v+3) + (5v+6) = 180

2. solve: 9v+9=180

3. simplify: 9v=180-9 => 9v=171

4. divide both sides with 9 to make "v" alone without 9

     --> 9v / 9 = 171 / 9 => v=19

netineya [11]3 years ago
4 0

Answer:

4v+3 + 5v +6=180

ans is v=19

hope so its the ans

Step-by-step explanation:

mark as brainliest plzzz

You might be interested in
Can you help me with this please?
N76 [4]
Use a calculator and divide
8 0
3 years ago
Someone please help math question?ASAP
natali 33 [55]
A I am pretty sure. I apologize if I am incorrect. 
3 0
3 years ago
20 points...<br><br> Sherlock - please help!
antiseptic1488 [7]

Answer:

C) \{\frac{1+\sqrt{5}}{3},\:\frac{1-\sqrt{5}}{3}\}

Step-by-step explanation:

(3x-1)^2=5\\\\3x-1=\pm\sqrt{5}\\\\3x=1\pm\sqrt{5}\\\\x=\frac{1\pm\sqrt{5}}{3}\\ \\\{\frac{1+\sqrt{5}}{3},\:\frac{1-\sqrt{5}}{3}\}

3 0
2 years ago
This is a question on my partial fractions homework, but no matter what I try I can't figure it out..
Ierofanga [76]
\dfrac{x^2+x+1}{(x+1)^2(x+2)}=\dfrac{a_1x+a_0}{(x+1)^2}+\dfrac b{x+2}
\implies\dfrac{x^2+x+1}{(x+1)^2(x+2)}=\dfrac{(a_1x+a_0)(x+2)+b(x+1)^2}{(x+1)^2(x+2)}
\implies x^2+x+1=(a_1+b)x^2+(2a_1+a_0+2b)x+(2a_0+b)
\implies\begin{cases}a_1+b=1\\2a_1+a_0+2b=1\\2a_0+b=1\end{cases}\implies a_1=-2,a_0=-1,b=3

So you have

\displaystyle\int_0^2\frac{x^2+x+1}{(x+1)^2(x+2)}\,\mathrm dx=-2\int_0^2\frac x{(x+1)^2}\,\mathrm dx-\int_0^2\frac{\mathrm dx}{(x+1)^2}+3\int_0^2\frac{\mathrm dx}{x+2}
=\displaystyle-2\int_1^3\dfrac{x-1}{x^2}\,\mathrm dx-\int_0^2\frac{\mathrm dx}{(x+1)^2}+3\int_0^2\frac{\mathrm dx}{x+2}

where in the first integral we substitute x\mapsto x+1.

=\displaystyle-2\int_1^3\left(\frac1x-\frac1{x^2}\right)\,\mathrm dx-\frac1{1+x}\bigg|_{x=0}^{x=2}+3\ln|x+2|\bigg|_{x=0}^{x=2}
=-2\left(\ln|x|+\dfrac1x\right)\bigg|_{x=1}^{x=3}-\dfrac23+3(\ln4-\ln2)
=-2\left(\ln3+\dfrac13-1\right)-\dfrac23+3\ln2
=\dfrac23+\ln\dfrac89
4 0
3 years ago
Please Answer Attachment Below thank You so much
Mazyrski [523]

103 would be the correct answer

8 0
3 years ago
Read 2 more answers
Other questions:
  • The Roth family has liquid assets of $10,000, use assets of $150,000 and investment assets of $34,000. They also have liabilitie
    10·1 answer
  • If f (x) =1/9x-2 what is f1(x)?
    14·1 answer
  • How to convert 45% into a fraction
    11·1 answer
  • The measure of the length of a rectangle is 5x and the measure of the width is 3x.
    7·1 answer
  • 1. Chapter ma2pe08r, Section .72, Problem 012 (ID: 012.07.2 - MC - MANK08) David tunes pianos in his spare time for extra income
    12·1 answer
  • I need this solved please.
    14·1 answer
  • Solve 4x + 15x +9==0 by factoring
    9·2 answers
  • !!!PLEASE HELP I'LL GIVE BRAINLIEST AND 30 POINTS!!!
    14·1 answer
  • -40-2[(-8) / 2] please someone explain this how to do it
    6·1 answer
  • 50 yards of tape is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!