1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
3 years ago
9

Anybody wanna do a zoooooooom? I’m just bored. Also what is 1479 times 63927 + $1862?.

Mathematics
1 answer:
likoan [24]3 years ago
7 0

Answer:

OVER 9000! lol

Step-by-step explanation:

You might be interested in
Given: x + 2y = -6.<br><br><br><br> Solve for y.
zavuch27 [327]

Answer:

The answer is option 3.

Step-by-step explanation:

The steps are :

x + 2y =  - 6

2y =  -x - 6

y =  \frac{ - x - 6}{2}

7 0
3 years ago
Read 2 more answers
How do you subtract rational expressions without a common denominator?
zubka84 [21]
You would have to make common denominators
consider a/b,c/d in Q
then a/b - c/d = ad/db - cb/bd = (ad-cb)/db for all a,b,c,d in R, exclude b,d=0
i.e. 1/2 - 1/4
=4/8 - 2/8 =(4-2)/8=2/8 =1/4
4 0
3 years ago
Whats 999 divided by 9?
sp2606 [1]

999 divided by 9 is 111


6 0
3 years ago
Read 2 more answers
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
Evaluate 20.003+[(30.1+5.75)-6.87
Amanda [17]

Answer:

48.983.

Step-by-step explanation:

(The parentheses are not balanced so I am assuming that there is a square parentheses at the end of the given expression).

Using order of operations (PEMDAS):

20.003 + [(30.1 + 5.75) - 6.87]     Work out the inner parentheses first:

= 20.003 + [35.85 - 6.87]             Now the outer parentheses:

= 20.003 + 28.98

= 48.983.

3 0
3 years ago
Read 2 more answers
Other questions:
  • The image of (6, 9) under a dilation is (4, 6).
    6·2 answers
  • Suppose that x and y vary inversely and x = 1 when y = 12. Write a function that models the inverse variation. Graph the functio
    15·1 answer
  • The magnitude of a force vector is 81.0 newtons (N). The x component of this vector is directed along the +x axis and has a magn
    12·1 answer
  • X^2+4x=7 using the quadratic formula?
    8·1 answer
  • Solve the inequality for y.<br> 8x – 7y &lt; -35
    14·1 answer
  • Find the surface area of the square pyramid
    5·1 answer
  • A system of equations is shown below: 3x − y = 2 x + y = 6 The x-coordinate of the solution to this system of equations is _____
    8·1 answer
  • I have one more question I need help on. If A(-5,3)B(3,9)C(2,2), classify triangle ABC as scalene, isosceles, or equilateral. If
    15·1 answer
  • Complete the table. ​
    9·1 answer
  • Please help me. My mom is gonna take away my kitten if I don't get a good grade.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!