Answer:
Explanation:
My best bet is DNA methylation at the site of Tweedledum's leptin gene or Histone Acetylation at the site of Tweedledee's gene.
B/c DNA methylation is a process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. So this is probably repressing Tweedledum's leptin gene trancription which is not happening in Tweedledee.
Additionally, Histone Acetylation at site of Tweedledee's gene increases her trancription b/c Histone acetylation causes DNA to be more accessible and leads to more transcription factors being able to reach the DNA. Thus, acetylation of histones is known to increase the expression of genes through transcription activation.
Answer: Yes. Splicing can be done in different ways to yield different mRNAs wich will create different proteins. Prokaryotes are not able to do this.
Explanation:
DNA (deoxyribonucleic acid) is a molecule that contains the genetic information for synthesizing amino acids that form proteins. To do this, DNA must first be transcribed into RNA (ribonucleic acid) and this is the molecule used for protein synthesis (translation). The newly transcribed RNA (called primary messenger RNA) from DNA results in a very long molecule and also has regions that do not code for anything, called introns, which are removed by a process called splicing. Exons are segments in the RNA that do code for amino acids and remain in the mature mRNA after splicing.
<u>Splicing is a process by which introns are cleaved from the primary messenger RNA and exons are joined to generate mature messenger RNA.</u> In addition, alternative splicing occurs which allows different mRNA isoforms and thus different proteins to be obtained from a primary mRNA transcript. This is because the exons will be joined or spliced in different ways, giving rise to different mature messenger RNA sequences. This process occurs mainly in eukaryotes, although it can also be observed in viruses. But it does not take place in Prokaryotes (Bacteria).
In summary, exons/introns can be spliced together in different ways to yield different mRNAs sequences. Each different mRNA sequence will code for a different protein.
False that is not correct
Answer:
You drew this its not even a question
Explanation:
How do I answer this if theirs no question
Cell membrane so you can think outside the box