Yes, they are.
If the triangles have three corresponding angles equal means that they are either similar or congruent.
The definition of congruent means that the sides have the same length. That is precisely what the statement says.
So, being the lengths of the corresponding angles the same the two triangles are identical, this is they are congruent.
Any point with the y of 5 could be the answer
Let us take 'a' in the place of 'y' so the equation becomes
(y+x) (ax+b)
Step-by-step explanation:
<u>Step 1:</u>
(a + x) (ax + b)
<u>Step 2: Proof</u>
Checking polynomial identity.
(ax+b )(x+a) = FOIL
(ax+b)(x+a)
ax^2+a^2x is the First Term in the FOIL
ax^2 + a^2x + bx + ab
(ax+b)(x+a)+bx+ab is the Second Term in the FOIL
Add both expressions together from First and Second Term
= ax^2 + a^2x + bx + ab
<u>Step 3: Proof
</u>
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
Identity is Found
.
Trying with numbers now
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
((2*5)+8)(5+2) =(2*5^2)+(2^2*5)+(8*5)+(2*8)
((10)+8)(7) =(2*25)+(4*5)+(40)+(16)
(18)(7) =(50)+(20)+(56)
126 =126