Answer:
25.6 units
Step-by-step explanation:
From the figure we can infer that our triangle has vertices A = (-5, 4), B = (1, 4), and C = (3, -4).
First thing we are doing is find the lengths of AB, BC, and AC using the distance formula:

where
are the coordinates of the first point
are the coordinates of the second point
- For AB:
![d=\sqrt{[1-(-5)]^{2}+(4-4)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B1-%28-5%29%5D%5E%7B2%7D%2B%284-4%29%5E2%7D)



- For BC:





- For AC:
![d=\sqrt{[3-(-5)]^{2} +(-4-4)^{2}}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B3-%28-5%29%5D%5E%7B2%7D%20%2B%28-4-4%29%5E%7B2%7D%7D)





Next, now that we have our lengths, we can add them to find the perimeter of our triangle:




We can conclude that the perimeter of the triangle shown in the figure is 25.6 units.
You can use a calculator and put is where I’d can tell you the answer
Easy
y=a(x-h)^2+k
vertex is (h,k)
we know that vertex is (4,0)
input that point for (h,k)
y=a(x-4)^2+0
y=a(x-4)^2
passes thorugh the point (6,1)
input that point to find a
1=a(6-4)^2
1=a(2)^2
1=a(4)
divide both sides by 4
1/4=a
thefor the equation is
y=(1/4)(x-4)^2
or
y=(1/4)x^2-2x+4
Colors are Qualitative and Nominal: Qualitative, because there is no number involved for "color" and Nominal, because their is no natural ordering for color