1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
10

Look at this cone:,,

Mathematics
1 answer:
Assoli18 [71]3 years ago
7 0
  • Slant height=l=3ft
  • Radius=r=2ft

We know

\boxed{\sf \star TSA_{(Cone)}=\pi r(r+\ell)}

\\ \sf\longmapsto TSA_{(Old\:Cone)}=2 \dfrac{22}{7}\times 2(2+3)

\\ \sf\longmapsto TSA_{(Old\:Cone)}=\dfrac{44}{7}(5)

\\ \sf\longmapsto TSA_{(Old\:Cone)}=\dfrac{220}{7}

\\ \sf\longmapsto TSA_{(Old\:Cone)}=31.4ft^2

Now

  • New slant height =2(3)=6cm
  • New radius=2(2)=4cm

\\ \sf\longmapsto TSA_{(New\:Cone)}=\dfrac{22}{7}\times 4(4+6)

\\ \sf\longmapsto TSA_{(New\:Cone)}=\dfrac{88}{7}(10)

\\ \sf\longmapsto TSA_{(New\:Cone)}=\dfrac{880}{7}

\\ \sf\longmapsto TSA_{(New\:Cone)}=125.7cm^2

So

\\ \sf\longmapsto \dfrac{TSA_{(New\:Cone)}}{TSA_{(Old\:Cone)}}=\dfrac{125.7}{31.4}

\\ \sf\longmapsto \dfrac{TSA_{(New\:Cone)}}{TSA_{(Old\:Cone)}}=\dfrac{4}{1}

\\ \sf\longmapsto\underline{\boxed{\bf{ {TSA_{(New\:Cone)}}:{TSA_{(Old\:Cone)}}=4:1}}}

You might be interested in
A store manager predicts that 100 hats will be sold if each hat costs $12. The manager predicts that 4 less hats will be sond fo
vampirchik [111]

Answer:

100-60=40

40/4=10

10*$1=$10

$12+$10=$22

3 0
2 years ago
john currently has enough money to buy 45 books. If the cost of each book was 10 cents less.john could buy 5 more books. How muc
SVEN [57.7K]
Let the cost of one book= x cents
Let the money john have= y cents

According to the question,

45x=y                                               ...eq(1)
(45+5)(x-5)=y                                  
50(x-5)=y                                         
50x-250=y                                        ...eq(2)

On subtracting (1) from (2).
(50x-250)-45x=y-y
5x-250=0
x=250/5
x=50

Thus, cost of each book is 50 cents and john has 2250 cents.

Hope it helps.
Don't feel shy in saying thx if it helps.


4 0
3 years ago
Consider the integral Integral from 0 to 1 e Superscript 6 x Baseline dx with nequals 25 . a. Find the trapezoid rule approximat
photoshop1234 [79]

Answer:

a.

With n = 25, \int_{0}^{1}e^{6 x}\ dx \approx 67.3930999748549

With n = 50, \int_{0}^{1}e^{6 x}\ dx \approx 67.1519320308594

b. \int_{0}^{1}e^{6 x}\ dx \approx 67.0715427161943

c.

The absolute error in the trapezoid rule is 0.08047

The absolute error in the Simpson's rule is 0.00008

Step-by-step explanation:

a. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 25 with the trapezoid rule you must:

The trapezoidal rule states that

\int_{a}^{b}f(x)dx\approx\frac{\Delta{x}}{2}\left(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 25.

Therefore,

\Delta{x}=\frac{1-0}{25}=\frac{1}{25}

We need to divide the interval [0,1] into n = 25 sub-intervals of length \Delta{x}=\frac{1}{25}, with the following endpoints:

a=0, \frac{1}{25}, \frac{2}{25},...,\frac{23}{25}, \frac{24}{25}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

2f\left(x_{2}\right)=2f\left(\frac{2}{25}\right)=2 e^{\frac{12}{25}}=3.23214880438579

...

2f\left(x_{24}\right)=2f\left(\frac{24}{25}\right)=2 e^{\frac{144}{25}}=634.696657835701

f\left(x_{25}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{50}(1+2.54249830064281+3.23214880438579+...+634.696657835701+403.428793492735)\approx 67.3930999748549

  • To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 50 with the trapezoid rule you must:

We have that a = 0, b = 1, n = 50.

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{50}\right)=2 e^{\frac{3}{25}}=2.25499370315875

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

2f\left(x_{49}\right)=2f\left(\frac{49}{50}\right)=2 e^{\frac{147}{25}}=715.618483417705

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{100}(1+2.25499370315875+2.54249830064281+...+715.618483417705+403.428793492735) \approx 67.1519320308594

b. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using 2n with the Simpson's rule you must:

The Simpson's rule states that

\int_{a}^{b}f(x)dx\approx \\\frac{\Delta{x}}{3}\left(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+2f(x_{n-2})+4f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 50

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

4f\left(x_{1}\right)=4f\left(\frac{1}{50}\right)=4 e^{\frac{3}{25}}=4.5099874063175

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

4f\left(x_{49}\right)=4f\left(\frac{49}{50}\right)=4 e^{\frac{147}{25}}=1431.23696683541

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the Simpson's rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{150}(1+4.5099874063175+2.54249830064281+...+1431.23696683541+403.428793492735) \approx 67.0715427161943

c. If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A-B|

The absolute error in the trapezoid rule is

The calculated value is

\int _0^1e^{6\:x}\:dx=\frac{e^6-1}{6} \approx 67.0714655821225

and our estimate is 67.1519320308594

Thus, the absolute error is given by

|67.0714655821225-67.1519320308594|=0.08047

The absolute error in the Simpson's rule is

|67.0714655821225-67.0715427161943|=0.00008

6 0
3 years ago
F(x)=−x <br> 2<br> −7x Find f(−10)
djyliett [7]

Answer:

What's '2−7x'

Step-by-step explanation:

3 0
2 years ago
Math 7 Grade 7
OleMash [197]
The conclusion is valid
it is a systematic random sample
and the second one is a line graph (I think)
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is this question for math 2/12+1/3
    10·2 answers
  • Grandma baked 9696 cookies and gave them to her grandchildren. One of the grandchildren, Cindy, received cc fewer cookies than s
    11·2 answers
  • State the degree of the polynomial xy+3x2-7+x
    9·2 answers
  • At the popular restaurant Fire Wok,
    5·2 answers
  • Help answer these questions please please
    14·1 answer
  • Write the fraction or mixed number as a decimal
    5·2 answers
  • Need help with this!!! ASAP
    10·1 answer
  • Angie was given the system of equations. Angie's work is shown in the table. 7x +y = - 12 7x + 4y = -6 Steps 1 Angie's Work --1
    6·1 answer
  • If you have 6 pieces of plywood
    5·1 answer
  • Help pls- And now brainly is making me type more soo-​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!