Answer:you put the differnet people in grades together like one grade goes first then the other then the other
Step-by-step explanation:
320÷((11−9)32(11−9)32) x 8
320÷((352-288)(352-288) x 8
320÷(64 x 64) x 8
320÷4096 x 8
0.078125 x 8
0.625
Answer:0.625
Finding the midpoint coordinates of any segment really boils down to finding the midpoints of each individual coordinate.
The x-coordinates of the two points are -12 and -8 - the number halfway between those two is -10, so that'll be the midpoint's x-coordinate. The y-coordinates are -7 and -4 - -5.5 is halfway between these two, so the y-coordinate will be 5.5.
Putting the two together, the midpoint of the segment WT has the coordinates (-10, -5.5).
Answer:
seventh interior angle=∠x=29°
Step-by-step explanation:
sum of interior angle of polygon is equal to 360°
let seventh angle of heptagon is x
∠x+47°+55°+62°+64°+54°+49°=360°
∠x=360°-(47°+55°+62°+64°+54°+49°)
∠x=360°-331°=29°
∠x=29°
seventh interior angle=∠x=29° answer
Answer:
Step-by-step explanation:
1). segment AB ≅ segment AE ......... 1). Given
2). ΔBAE is isosceles .............. 2). Definition of isosceles Δs
3). ∠ABC ≅ ∠AEB ............. 3). Corollary to isosceles Δs theorem
4). segment BG ≅ segment EF ........ 4). Definition of midpoints
5). segment BC ≅ segment ED ......... 5) Given
6). segment CD ≅ segment DC ....... 6). Reflexive property
7). segment BD ≅ segment EC ........ 7). Property of sum of equals parts
8). ΔBGD ≅ Δ EFC ............... 8). SAS postulate
9). ∠1 ≅ ∠2 ............ 9). Corresponding parts of congruent Δs
10). ΔCHD is isosceles ............ 10). Corollary to isosceles Δs theorem