Answer:
The machine can make 24 bottles of soda per minute
Step-by-step explanation:
Looking at the graph of the relationship, we can see that the number of bottles per minute simply represent the slope of the line
Thus, by calculating the slope using the given points, we can have the number of bottles per minute
We have the formula as;
m = (y2-y1)/(x2-x1)
(x1,y1) = (4,96)
(x2,y2) = (6,144)
m = (144-96)/(6-4) = 48/2 = 24
Answer:
a) The mean number of radioactive atoms that decay per day is 81.485.
b) 0% probability that on a given day, 50 radioactive atoms decayed.
Step-by-step explanation:
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
a. Find the mean number of radioactive atoms that decayed in a day.
29,742 atoms decayed during 365 days, which means that:

The mean number of radioactive atoms that decay per day is 81.485.
b. Find the probability that on a given day, 50 radioactive atoms decayed.
This is P(X = 50). So

0% probability that on a given day, 50 radioactive atoms decayed.
Answer:
A) 128
B) 7800
Step-by-step explanation:
Trial and error until I got to 75 x 104 and 60 x 128 (which abides by the fact that there has to be 24 more red boxes) which equals 7800 and 7680 and if you take them away from each other you get 120
Answer:

Step-by-step explanation:
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The population proportion have the following distribution

So under the null hypothesis the mean for the population proportion is p

And the standard deviationis given by:

Since, population of species A is represented by : 
Let us find the population of species A, at the end of week 1:
i.e., x = 1
i.e., 
i.e., 
i.e., 
Also, since population of species B is represented by : 
Let us find the population of species B, at the end of week 1:
i.e., x = 1
i.e., 
i.e., 
i.e., 
Thus, at the end of 1 week, species A and species B will have the same population.
Hence, option D is correct.