Okay, so first of all, if the trapezoid was translated right 4,
Then all the (x)'s should be 4 more than the original value
For example: (2,-3) <span>→ (6,-3)
Now since the Trapezoid was translated down 3,
Then all the (y)'s should be 3 less than the original value
For example: (2,-3) </span><span>→ (2,-6)
Now do this to all the Vertices
</span>
Final Answer: <span>
Option 2</span>
Answer:
25
Step-by-step explanation:
Let n be the first integer.
Then the second integer will be (n + 1).
And the third will be (n + 2).
The sum is 78. Therefore:

Solve for n. Combine like terms:

So:

Therefore:

Therefore, the first integer is 25.
So our sequene is 25, 26, and 27.
The integer closest to zero will thus be 25.
Answer:
A. .25
B. .95
C. .75
D. .42
Step-by-step explanation:
It has been proven that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
<h3>How to prove a Line Segment?</h3>
We know that in a triangle if one angle is 90 degrees, then the other angles have to be acute.
Let us take a line l and from point P as shown in the attached file, that is, not on line l, draw two line segments PN and PM. Let PN be perpendicular to line l and PM is drawn at some other angle.
In ΔPNM, ∠N = 90°
∠P + ∠N + ∠M = 180° (Angle sum property of a triangle)
∠P + ∠M = 90°
Clearly, ∠M is an acute angle.
Thus; ∠M < ∠N
PN < PM (The side opposite to the smaller angle is smaller)
Similarly, by drawing different line segments from P to l, it can be proved that PN is smaller in comparison to all of them. Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
Read more about Line segment at; brainly.com/question/2437195
#SPJ1