1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blsea [12.9K]
3 years ago
6

When supply equals demand:

Advanced Placement (AP)
1 answer:
sdas [7]3 years ago
5 0

Answer:

market \: equilibrium \: occurs \\ thank \: you

You might be interested in
A niche is part of an organism's habitat.
mariarad [96]

Answer:

true because In ecology, a niche is a term describing the relational position of a species or population in its ecosystem to each other

Explanation:

3 0
3 years ago
Which group primarily helps settle trade disputes?
Sphinxa [80]
The World Trade Organization hope this helped ( please give brainliest!). : )
4 0
3 years ago
Solve the following differential equation with initial conditions: y''=e^-2t+10e^4t ; y(0)=1, y'(0)=0​
skad [1K]

Answer:

Option A.  y = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

Explanation:

This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go.  At a couple points, we'll need to apply u-substitution.

<u>Round 1:</u>

To solve the differential equation, write it as differentials, move the differential, and integrate both sides:

y''=e^{-2t}+10e^{4t}

\frac{dy'}{dt}=e^{-2t}+10e^{4t}

dy'=[e^{-2t}+10e^{4t}]dt

\int dy'=\int [e^{-2t}+10e^{4t}]dt

Applying various properties of integration:

\int dy'=\int e^{-2t} dt + \int 10e^{4t}dt\\\int dy'=\int e^{-2t} dt + 10\int e^{4t}dt

Prepare for integration by u-substitution

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt, letting u_1=-2t and u_2=4t

Find dt in terms of u_1 \text{ and } u_2

u_1=-2t\\du_1=-2dt\\-\frac{1}{2}du_1=dt     u_2=4t\\du_2=4dt\\\frac{1}{4}du_2=dt

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt\\\int dy'=\int e^{u_1} (-\frac{1}{2} du_1) + 10\int e^{u_2}  (\frac{1}{4} du_2)\\\int dy'=-\frac{1}{2} \int e^{u_1} (du_1) + 10 *\frac{1}{4} \int e^{u_2}  (du_2)

Using the Exponential rule (don't forget your constant of integration):

y'=-\frac{1}{2} e^{u_1} + 10 *\frac{1}{4}e^{u_2} +C_1

Back substituting for u_1 \text{ and } u_2:

y'=-\frac{1}{2} e^{(-2t)} + 10 *\frac{1}{4}e^{(4t)} +C_1\\y'=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\

<u>Finding the constant of integration</u>

Given initial condition  y'(0)=0

y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\0=y'(0)=-\frac{1}{2} e^{-2(0)} + \frac{5}{2}e^{4(0)} +C_1\\0=-\frac{1}{2} (1) + \frac{5}{2}(1) +C_1\\-2=C_1\\

The first derivative with the initial condition applied: y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\

<u>Round 2:</u>

Integrate again:

y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\

y = -\frac{1}{2} * -\frac{1}{2} e^{-2t} + \frac{5}{2} * \frac{1}{4} e^{4t} - 2 t + C_2\\y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + C_2

<u />

<u>Finding the constant of integration :</u>

Given initial condition  y(0)=1

1=y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + C_2\\1 = \frac{1}{4} (1) + \frac{5}{8} (1) - (0) + C_2\\1 = \frac{7}{8} + C_2\\\frac{1}{8}=C_2

So, y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

<u>Checking the solution</u>

y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

This matches our initial conditions here y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + \frac{1}{8} = 1

Going back to the function, differentiate:

y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'

Apply Exponential rule and chain rule, then power rule

y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2

This matches our first order step and the initial conditions there.

y'(0) = -\frac{1}{2} e^{-2(0)} + \frac{5}{2} e^{4(0)} - 2=0

Going back to the function y', differentiate:

y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'

Applying the Exponential rule and chain rule, then power rule

y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}

So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.

7 0
2 years ago
Twice as many trained workers are permitted to immigrate to the United States as in the past. Explain the impact on economic gro
mixas84 [53]

Answer: There will be an increase in economic growth as more output will be supplied at lower prices.

Explanation:

When twice as many workers are allowed to move to the United States, this will lead to a surplus in the labor market. The surplus in the labor market will lead to the reduction in wages as the workers will compete with one another.

The competition will lead to decrease in wage rates and the business costs decrease as well. This will in turn, lead to the reduction in the price level and an increase in the quantity supplied. The rightward shift will cause movement along the aggregate demand curve, as there will be more output to be supplied at a lower price level.

4 0
3 years ago
Read 2 more answers
PLZZZZZ solve i dont understand it.(x + 4)( x - 4) =?
4vir4ik [10]

this is a foiling equation

so the answer is x^2-16

7 0
3 years ago
Other questions:
  • Explain chunking, recency effect, and primacy effect in regards to short-term memory when more than nine items of unrehearsed in
    14·2 answers
  • True or false: 1. Chemicals produced by a plant that control its growth a d development are called hormones.
    11·1 answer
  • Write each sentence with one of these words:
    5·1 answer
  • How is perspiration related to recovery after exercise?
    12·1 answer
  • Who do the animals in Animal Farm represent?
    6·1 answer
  • I said it is a good idea I just need some more reasons as to why it is. So may someone gimme more reasons? POINTS: 35
    6·1 answer
  • Analysis of Apple's innovation activities
    10·1 answer
  • Add me now and you will get 50 points forrealls
    6·2 answers
  • Phycology
    13·1 answer
  • What should I study for the first AP World History test
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!