Answer:
1.31x10¹¹ g/cm³
Explanation:
The mass of the proton is equal to the mass of the neutron, which is 1.67x10⁻²⁴ g, so the mass of the alpha particle is 4*1.67x10⁻²⁴ = 6.68x10⁻²⁴ g.
1 fm = 1.0x10⁻²³ cm, thus the radius of the alpha particle is 2.3x10⁻¹² cm. If the particle is a sphere, the volume of it is:
V = (4/3)*π*r³, where r is the radius, so:
V = (4/3)*π*(2.3x10⁻¹²)³
V = 5.1x10⁻³⁵ cm³
The density of the particle is the how mass exists per unit of volume, so, it's the mass divided by the volume:
d = 6.68x10⁻²⁴/5.1x10⁻³⁵
d = 1.31x10¹¹ g/cm³
B. XY Represents name male. While. XX represents female. Hope that helps
There are 67.2 liters of CO2 at STP
<h3>Further explanation</h3>
Given
3 mole of CO2
Required
Volume of CO2 at STP
Solution
Standard conditions for temperature and pressure are used as a reference in certain calculations or conditions
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, Vm is 22.4 liters / mol.
So for 3 moles :
= 3 x 22.4 L
= 67.2 L
The average kinetic energy of translation of oxygen molecules in the gas is 5.05 × 10⁻²¹
The given data is
n = 2
v = 20
P = 92
K.E = 3 / 2 KbT
= 3 / 2 PV / N
= 3 / 2 Pv / nNa
K.E = 3 / 2 × 9 × 1.013 × 10⁵ × 20 × 10⁻³ / 2 × 6.022 × 10²³
K. E = 5.05 × 10⁻²¹ J
<h3>Average kinetic energy</h3>
The average kinetic energy (K) is equal to one half of the mass of each gas molecule times the RMS speed squared
Hence, the average kinetic energy is 5.05 × 10⁻²¹ J
Learn more about the average kinetic energy on
brainly.com/question/3249165
#SPJ4