Answer:
See Below
Step-by-step explanation:
Thankfully, all the parts you need are given.
First, find the surface of one triangle
A = 1/2bh
A = 1/2(15)(9)
A = 1/2(135)
A = 67.5
Multiply by 4 to get the sum of all the sides.
67.5(4) = 270
Now find the surface area of one square
A = bh
A = (15)(15)
A = 225
multiply by 5 to get all 5 sides
225(5) = 1125
Add sums together
1125 + 270 = 1395
Hello! I got the answer no solution, which the symbol for that is Ø
This is indeed a linear equation. y-4x=9 in standard form is y=4x+9.
(2x-3y)^5
(2x-3y)(2x-3y)(2x-3y)(2x-3y)(2x-3y)
1st and 2nd power :
(2x-3y)(2x-3y) = 2x(2x-3y)-3y(2x-3y) = 4x² - 6xy - 6xy + 9y²
= 4x² - 12xy + 9y²
3rd power:
(2x-3y)(4x² - 12xy + 9y²) = 2x(4x² - 12xy + 9y²) - 3y(4x² - 12xy + 9y²)
8x³ - 24x²y + 18xy² - 12x²y +36xy² - 27y³
8x³ - 24x²y - 12x²y + 18xy² + 36xy² - 27y³
8x³ - 36x²y + 54xy² - 27y³
4th power
(2x-3y)(8x³ - 36x²y + 54xy² - 27y³) = 2x(8x³ - 36x²y + 54xy² - 27y³) -3y(8x³ - 36x²y + 54xy² - 27y³) = 16x^4 - 72x³y + 108x²y² - 54xy³ - 24x³y + 108x²y² - 162xy³ + 81y^4
16x^4 - 72x³y - 24x³y + 108x²y² + 108x²y² - 54xy³ - 162xy³ + 81y^4
16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4
5th power
(2x-3y)(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
2x(</span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4) - 3y(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
= 32x^5 - 192x^4y + 432x</span>³y² - 432x²y³ + 162xy^4 - 48x^4y + 288x³y² - 648x²y³ + 648xy^4 - 243y^5
32x^5 - 192x^4y -48x^4y + 432x³y² + 288x³y² - 432x²y³ - 648x²y³ + 162xy^4 + 648xy^4 - 243y^5
32x^5 - 240x^4y + 720x³y² - 1,080x²y³ + 810xy^4 - 243y^5