Answer:
<h2>A. The series CONVERGES</h2>
Step-by-step explanation:
If
is a series, for the series to converge/diverge according to ratio test, the following conditions must be met.
![\lim_{n \to \infty} |\frac{a_n_+_1}{a_n}| = \rho](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%7C%5Cfrac%7Ba_n_%2B_1%7D%7Ba_n%7D%7C%20%3D%20%5Crho)
If
< 1, the series converges absolutely
If
, the series diverges
If
, the test fails.
Given the series ![\sum\left\ {\infty} \atop {1} \right \frac{n^2}{5^n}](https://tex.z-dn.net/?f=%5Csum%5Cleft%5C%20%7B%5Cinfty%7D%20%5Catop%20%7B1%7D%20%5Cright%20%5Cfrac%7Bn%5E2%7D%7B5%5En%7D)
To test for convergence or divergence using ratio test, we will use the condition above.
![a_n = \frac{n^2}{5^n} \\a_n_+_1 = \frac{(n+1)^2}{5^{n+1}}](https://tex.z-dn.net/?f=a_n%20%3D%20%5Cfrac%7Bn%5E2%7D%7B5%5En%7D%20%5C%5Ca_n_%2B_1%20%3D%20%5Cfrac%7B%28n%2B1%29%5E2%7D%7B5%5E%7Bn%2B1%7D%7D)
![\frac{a_n_+_1}{a_n} = \frac{{\frac{(n+1)^2}{5^{n+1}}}}{\frac{n^2}{5^n} }\\\\ \frac{a_n_+_1}{a_n} = {{\frac{(n+1)^2}{5^{n+1}} * \frac{5^n}{n^2}\](https://tex.z-dn.net/?f=%5Cfrac%7Ba_n_%2B_1%7D%7Ba_n%7D%20%3D%20%20%5Cfrac%7B%7B%5Cfrac%7B%28n%2B1%29%5E2%7D%7B5%5E%7Bn%2B1%7D%7D%7D%7D%7B%5Cfrac%7Bn%5E2%7D%7B5%5En%7D%20%7D%5C%5C%5C%5C%20%5Cfrac%7Ba_n_%2B_1%7D%7Ba_n%7D%20%3D%20%7B%7B%5Cfrac%7B%28n%2B1%29%5E2%7D%7B5%5E%7Bn%2B1%7D%7D%20%2A%20%5Cfrac%7B5%5En%7D%7Bn%5E2%7D%5C)
![\frac{a_n_+_1}{a_n} = {{\frac{(n^2+2n+1)}{5^n*5^1}} * \frac{5^n}{n^2}\\](https://tex.z-dn.net/?f=%5Cfrac%7Ba_n_%2B_1%7D%7Ba_n%7D%20%3D%20%7B%7B%5Cfrac%7B%28n%5E2%2B2n%2B1%29%7D%7B5%5En%2A5%5E1%7D%7D%20%2A%20%5Cfrac%7B5%5En%7D%7Bn%5E2%7D%5C%5C)
aₙ₊₁/aₙ =
![\lim_{n \to \infty} |\frac{ n^2+2n+1}{5n^2}| \\\\Dividing\ through\ by \ n^2\\\\\lim_{n \to \infty} |\frac{ n^2/n^2+2n/n^2+1/n^2}{5n^2/n^2}|\\\\\lim_{n \to \infty} |\frac{1+2/n+1/n^2}{5}|\\\\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%7C%5Cfrac%7B%20n%5E2%2B2n%2B1%7D%7B5n%5E2%7D%7C%20%5C%5C%5C%5CDividing%5C%20through%5C%20by%20%5C%20n%5E2%5C%5C%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%7C%5Cfrac%7B%20n%5E2%2Fn%5E2%2B2n%2Fn%5E2%2B1%2Fn%5E2%7D%7B5n%5E2%2Fn%5E2%7D%7C%5C%5C%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%7C%5Cfrac%7B1%2B2%2Fn%2B1%2Fn%5E2%7D%7B5%7D%7C%5C%5C%5C%5C)
note that any constant dividing infinity is equal to zero
![|\frac{1+2/\infty+1/\infty^2}{5}|\\\\](https://tex.z-dn.net/?f=%7C%5Cfrac%7B1%2B2%2F%5Cinfty%2B1%2F%5Cinfty%5E2%7D%7B5%7D%7C%5C%5C%5C%5C)
![\frac{1+0+0}{5}\\ = 1/5](https://tex.z-dn.net/?f=%5Cfrac%7B1%2B0%2B0%7D%7B5%7D%5C%5C%20%3D%201%2F5)
![\rho = 1/5](https://tex.z-dn.net/?f=%5Crho%20%3D%201%2F5)
Since The limit of the sequence given is less than 1, hence the series converges.