Answer:
AB is longer FD
Step-by-step explanation:
Given
See attachment for triangles ABC and FDE
Required
Compare line segments AB and FD
From the attachment, we have:
--- equal line segments
The measure of angles will then be used to compare the line segments;


The longer the angle of depression, the shorter the required line segment
implies that AB is longer
Answer:
It is 7 hours and 50 minutes
The Karger's algorithm relates to graph theory where G=(V,E) is an undirected graph with |E| edges and |V| vertices. The objective is to find the minimum number of cuts in edges in order to separate G into two disjoint graphs. The algorithm is randomized and will, in some cases, give the minimum number of cuts. The more number of trials, the higher probability that the minimum number of cuts will be obtained.
The Karger's algorithm will succeed in finding the minimum cut if every edge contraction does not involve any of the edge set C of the minimum cut.
The probability of success, i.e. obtaining the minimum cut, can be shown to be ≥ 2/(n(n-1))=1/C(n,2), which roughly equals 2/n^2 given in the question.Given: EACH randomized trial using the Karger's algorithm has a success rate of P(success,1) ≥ 2/n^2.
This means that the probability of failure is P(F,1) ≤ (1-2/n^2) for each single trial.
We need to estimate the number of trials, t, such that the probability that all t trials fail is less than 1/n.
Using the multiplication rule in probability theory, this can be expressed as
P(F,t)= (1-2/n^2)^t < 1/n
We will use a tool derived from calculus that
Lim (1-1/x)^x as x->infinity = 1/e, and
(1-1/x)^x < 1/e for x finite.
Setting t=(1/2)n^2 trials, we have
P(F,n^2) = (1-2/n^2)^((1/2)n^2) < 1/e
Finally, if we set t=(1/2)n^2*log(n), [log(n) is log_e(n)]
P(F,(1/2)n^2*log(n))
= (P(F,(1/2)n^2))^log(n)
< (1/e)^log(n)
= 1/(e^log(n))
= 1/n
Therefore, the minimum number of trials, t, such that P(F,t)< 1/n is t=(1/2)(n^2)*log(n) [note: log(n) is natural log]
The requested equation is
C(m) = 7.50 + 0.25*m,
where C(m) is the total cost (in dollars) for "m" miles.
Make the plot on your own.