(x) = arcsec(x) − 8x
f'(x) = d/dx( arcsec(x) −
8x )
<span> 1/xsqrt( x^2 - 1) - 8</span>
f'(x) = 0
1/xsqrt( x^2 - 1) - 8 = 0
8 x sqrt (x^2-1) = 1
<span> ( 8 x sqrt (x^2-1) )^2 = 1</span>
64 x^2 ( x^2 - 1) = 1
64 x^4 - 64 x^2 =1
64 x^4 - 64 x^2 - 1 = 0
x = 1.00766 , - 1.00766
<span> x = - 1.00766</span>
f(- 1.00766) = arcsec(-
1.00766) − 8( - 1.00766)
f( - 1.00766 ) = 11.07949
x = 1.00766
f(1.00766) =
arcsec(1.00766) − 8( 1.00766)
f(1.00766 ) = -7.93790
relative maximum (x, y) =
(- 1.00766 , 11.07949 ) relative minimum (x, y) = ( 1.00766 ,
-7.93790 )
It would be 13 becsue 12.5 time 2 = 25 so round that it = 13
<h2>
ANSWER:</h2>
<em>I wonder if you have your equation wrong, because(a−b)2=(a−b)(a−b)=a2−ab−ba+b2=a2–2ab+b2</em>
<em> </em>
<em> Your equation, on the other hand, is (a+b)2 and that is not equal to (a−b)2 except when ab=0, i.e. when either a or b equals 0, and that is not what we normally mean by “prove”. Prove would imply “for all values of a and b”, which is not the case in the form you have your equation,</em>
<em><u>hope </u></em><em><u>you </u></em><em><u>undestood</u></em><em><u> </u></em><em><u>what </u></em><em><u>i </u></em><em><u>meant.</u></em><em><u>. </u></em>
<em><u>then </u></em><em><u>plz </u></em><em><u>like </u></em><em><u>and </u></em><em><u>follow </u></em><em><u>me.</u></em><em><u>. </u></em><em><u>♥</u></em>
Convert the given volumes to quantities with the same units. For this item, convert all volumes to m³
(1) 1.2x10 m³ = 12 m³
(2) 1.2x10^8 cm³ x (1 m / 100 cm)³ = 120 m³
(3) 2.0x10^4 dm³ x (1 m / 10 dm)³ = 20 m³
(4) 1.2x10^8 mm³ x (1 m / 1000 mm)³ = 0.12 m³
The least among the given is the fourth choice, 1.2x10^8 dm³.