Answer:
14 pages per day
Step-by-step explanation:
To do this, you must divide:
43 (pages)/3(days)= 14 (pages per day)
Hope this helps! :)
Given the table showing the distance Randy drove on one day of her vacation as follows:
![\begin{tabular} {|c|c|c|c|c|c|} Time (h)&1&2&3&4&5\\[1ex] Distance (mi)&55&110&165&220&275 \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATime%20%28h%29%261%262%263%264%265%5C%5C%5B1ex%5D%0ADistance%20%28mi%29%2655%26110%26165%26220%26275%0A%5Cend%7Btabular%7D)
The rate at which she travels is given by

If Randy has driven for one more hour at the same rate, the number of hours she must have droven is 6 hrs and the total distance is given by
distance = 55 x 6 = 330 miles.
Answer:
Marco- 10 is the starting value of the population. 2 is the growth rate of "double each day" with d as an exponent.
Isabella- 1 is the starting population. 1+0.2=1.2 is the rate at which it grows each day.
Step-by-step explanation:
Marco's equation should be
since the bacteria double each day. 10 is the starting value of the population. 2 is the growth rate of "double each day" with d as an exponent. This will double each day because:
Day 1 is 
Day 2 is 
Day 3 is 
Day 4 is 
You'll notice the value doubles each day.
Isabella has a different equation because her population increases by a percentage. We use the simple interest formula to calculate the bacteria's daily increase or interest.
1(1+0.2)d
1 is the starting population.
1+0.2=1.2 is the rate at which it grows each day.
Answer:
Sine Function sin Opposite side/ Hypotenuse
Tangent Function tan Opposite side / Adjacent side
Cosine Function cos Adjacent side / Hypotenuse
Cosecant Function cosec Hypotenuse / Opposite side
Step-by-step explanation:
Your welcome
Well the answer would be 120=120 and 68=68