Answer:
see below
Step-by-step explanation:
(ab)^n=a^n * b^n
We need to show that it is true for n=1
assuming that it is true for n = k;
(ab)^n=a^n * b^n
( ab) ^1 = a^1 * b^1
ab = a * b
ab = ab
Then we need to show that it is true for n = ( k+1)
or (ab)^(k+1)=a^( k+1) * b^( k+1)
Starting with
(ab)^k=a^k * b^k given
Multiply each side by ab
ab * (ab)^k= ab *a^k * b^k
( ab) ^ ( k+1) = a^ ( k+1) b^ (k+1)
Therefore, the rule is true for every natural number n
25% of $160
= (25/100) * 160
= 0.25 * 160
= 40
$40 paid.
Balance owed = $160 - $40 = $120
Balance owed = $120
13) Angle 1= 54 Angle 2=36
14) Angle 1=122 Angle 2=58
15) Angle 1=51 Angle 2=39
Attached is the work
Hope this helps!
In this item, we are to calculated for the 6th term of the geometric sequence given the initial value and the common ratio. This can be calculated through the equation,
An = (A₀)(r)ⁿ ⁻ ¹
where An is the nth term, A₀ is the first term (in this item is referred to as t₀), r is the common ratio, and n is the number of terms.
Substitute the known values to the equation,
An = (5)(-1/2)⁶ ⁻ ¹
An = -5/32
Hence, the answer to this item is the third choice, -5/32.