Well, a linear function is proportional, a straight line (on a graph). And the numbers must not have the same answer. For instance, if the X input is 5, and the Y output is 7. And then another X input is 5, and the Y output is 8, that's non-linear.
So, the Answer would be the third graph. This is because the X values are steadily increasing, and so are the Y values.
For the X and Y values, for each time X increases by 1, Y increases by -8. This is, linear because both sides are constantly and evenly increasing.
Answer:

Step-by-step explanation:

By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
No. 9% of 6,342 is 570.78. Rounded, it's close to 600, but not exact.
Rabbit: y=5x-7
Turtle: y=x
use substitution
x=5x-7
-4x=-7
x=7/4=1.75
1.75hr