Hey there :)
Now lets name each house
A B C D E F
500ft <-> 500ft <-> 500ft <-> 500ft <-> 500ft <-> 2000ft
Let's say the bus stops at A
= 0 ( from A ) + 500 ( from B ) + 500 + 500 ( from C ) + 500 + 500 + 500 ( from D ) + 500 + 500 + 500 + 500 ( from E ) + 500 + 500 + 500 + 500 + 2000 ( from F )
= 0 + 500 + 1000 + 1500 + 2000 + 4000
= 9000 ft
at B
= 500 ( from A ) + 0 ( from B ) + 500 ( from C ) + 500 + 500 ( from D ) + 500 + 500 + 500 ( from E ) + 500 + 500 + 500 + 2000 ( from F )
= 500 + 0 + 500 + 1000 + 1500 + 3500
= 7000 ft
at C
= 500 ( from A ) + 500 + 500 ( from B ) + 0 ( from C ) + 500 ( from D ) + 500 + 500 ( from E ) + 500 + 500 + 2000 ( from F )
= 500 + 1000 + 0 + 500 + 1000 + 3000
= 6000 ft
Do the same for D , E and F
at D
= 6000 ft
at E
= 7000 ft
at F
= 15000 ft
You will find that the bus should stop at either C or D to make the sum of distances from every house to the stop as small as possible.
B x is equal to 3
hope this helps
Answer:
sorry I can't answer
Step-by-step explanation:
pls thanks me
You're original equation has a -81, so the factored form will have to have a positive and negative multiplying one another to achieve that...
f(x) = x(x + 9)(x - 9)
Answer:
23 males and 12 females
Step-by-step explanation:
x = # of females
y = # of males
x + y = 35
x + x + 11 = 35
2x + 11 =35 (SUBTRACT 11 FROM BOTH SIDES)
2x = 24 (DIVIDE BOTH SIDES BY 2)
x = 12 females
x + y =35
12 + y = 35 (SUBTRACT 12 FROM BOTH SIDES)
y = 23 males
23 males + 12 females = 35 students