Explanation:
The sample mean is not always equal to the population mean but if we take more and more number of samples from the population then the mean of the sample would become equal to the population mean.
The Central Limit Theorem states that we can have a normal distribution of sample means even if the original population doesn't follow normal distribution, But we have to take a lot of samples.
Suppose a population doesn't follow normal distribution and is very skewed then we can still have sampling distribution that is completely normal if we take a lot of samples.
Answer:
EF =58
Step-by-step explanation:
from the illustration,
EF =DF - DE
<em>give</em><em>n</em><em> </em><em>that</em><em> </em><em>DF</em><em> </em><em>=</em><em>9</em><em>x</em><em>-</em><em>3</em><em>9</em><em> </em><em>,</em><em> </em><em>DE</em><em> </em><em>=</em><em>4</em><em>7</em><em> </em><em>EF</em><em>=</em><em>3</em><em>x</em><em> </em><em>+</em><em>1</em><em>0</em>
<em>sub</em><em>stitute</em><em> </em><em>them</em><em> </em><em>into</em><em> </em><em>the</em><em> </em><em>formu</em><em>la</em><em>,</em>
<em> </em><em> </em>
<em>3</em><em>x</em><em> </em><em>+</em><em>1</em><em>0</em><em>=</em><em>9</em><em>x</em><em>-</em><em>3</em><em>9</em><em> </em><em>-</em><em> </em><em>4</em><em>7</em>
<em>sol</em><em>ving</em><em> </em><em>for</em><em> </em><em>x</em>
<em>3</em><em>x</em><em> </em><em>+</em><em>1</em><em>0</em><em> </em><em>=</em><em>9</em><em>x</em><em> </em><em>-</em><em>8</em><em>6</em>
<em>grou</em><em>ping</em><em> like</em><em> </em><em>ter</em><em>ms</em>
<em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>9x</em><em> </em><em>=</em><em>-</em><em>8</em><em>6</em><em> </em><em>-</em><em>1</em><em>0</em>
<em>-6x</em><em>=</em><em>-</em><em>9</em><em>6</em>
<em>div</em><em>iding</em><em> </em><em>throu</em><em>gh</em><em> </em><em>by</em><em> </em><em>-</em><em>6</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>but</em><em> </em><em>EF</em><em>=</em><em>3</em><em>x</em><em>+</em><em>1</em><em>0</em>
substitute x=16 into it to get the EF
EF= 3(16)+10
EF=48+10
EF=58
A football field is rectangle so each matching side has the same length. Perimeter = adding all sides
We have a domain of a function, that is, which x-es can we throw in. But we are asking which y-s will we get given that we can only throw x-es in
.
Let's try
even though we are forbidden to put 4 inside
we are still able to do so.
So
what we just got is the upper limit of the range. The lower limit is
.
So the range is just
.
Hope this helps :)