A would be (-3, 6).
B would be (-6, 3).
Anytime something is asking you to reflect off of the Y-axis, you put the original but flipped. Also, your answer will always be straight across vertically.
Answer:
y=3/4x
Step-by-step explanation:
Answer:
f(1) = 4; f(n) = 4 + d(n - 1), n > 0.
Step-by-step explanation:
This arithmetic sequence has a common difference of d with first term = 4.
f(1) = 4; f(n) = 4 + d(n - 1), n > 0.
<h3>
Answer:</h3>
See the attached
<h3>
Step-by-step explanation:</h3>
When you square the binomial (a -b), you get ...
... (a -b)² = a² -2ab +b²
That is, both the a² and b² terms have positive signs, and the middle term is twice the product of the roots of the squared terms.
The last two selections have negative signs on the constant, so cannot be perfect square trinomials.
The first selection has a middle term that is -ab, not -2ab, so it is not a perfect square trinomial, either.
The second selection is the correct one:
... 4a² -20a +25 = (2a +5)²
Answer:
3=-3
A radical is a mathematical symbol used to represent the root of a number. Here’s a quick example: the phrase “the square root of 81” is represented by the radical expression . (In the case of square roots, this expression is commonly shortened to —notice the absence of the small “2.”) When we find we are finding the non-negative number r such that , which is 9.
While square roots are probably the most common radical, we can also find the third root, the fifth root, the 10th root, or really any other nth root of a number. The nth root of a number can be represented by the radical expression.
Radicals and exponents are inverse operations. For example, we know that 92 = 81 and = 9. This property can be generalized to all radicals and exponents as well: for any number, x, raised to an exponent n to produce the number y, the nth root of y is x.