QUESTION:
The code for a lock consists of 5 digits (0-9). The last number cannot be 0 or 1. How many different codes are possible.
ANSWER:
Since in this particular scenario, the order of the numbers matter, we can use the Permutation Formula:–
- P(n,r) = n!/(n−r)! where n is the number of numbers in the set and r is the subset.
Since there are 10 digits to choose from, we can assume that n = 10.
Similarly, since there are 5 numbers that need to be chosen out of the ten, we can assume that r = 5.
Now, plug these values into the formula and solve:
= 10!(10−5)!
= 10!5!
= 10⋅9⋅8⋅7⋅6
= 30240.
Answer:
8
Step-by-step explanation:
The answer is 8 because 1/2 times 1/2 times 1/2 is 1/8, which means that 8 B cubes can fit into cube A.
Answer:
128√5/3 mm³
Step-by-step explanation:
Since we are not told what to find, we can as well look for the volume of the pyramid
Volume of a square pyramid: V = (1/3)a²h
a is the side length of the square
h is the height of the pyramid
Given
a = 8mm
l² = (a/2)² + h²
l² = (a/2)² + h²
6² = (8/2)² + h²
h² = 6² - 4²
h² = 36 - 16
h² = 20
h = √20
Volume of a square pyramid = (1/3)*8²*√20
Volume of a square pyramid = 1/3 * 64 * 2√5
Volume of a square pyramid = 128√5/3 mm³
Answer:
x=20
Step-by-step explanation:
inverse operation
add 7 to both sides
x=20
48 because 9x=54. 54 divide by 9 is 6. 6 times 8 is 48
~JZ