Answer:
t
=
26
∘
57
+
k
360
∘
Step-by-step explanation:
tan
t
=
1
2
Calculator and unit circle give 2 solutions for (0, 360) -->
t
=
26
∘
57
, and
t
=
180
+
26.57
=
206
∘
57
General answer:
t
=
26
∘
57
+
k
360
∘
The flat fee that the store charges is $14 and the cost for 7 hours is $56
A linear equation is on the form:
y = mx + b
where y, x are variables, m is the rate of change and b is the initial value of y.
let f for the total rental cost of a vacuum cleaner for x hours
Using the points (1, 20) and (3, 32) from the table:

The flat fee that the store charges is $14
The reasonable domain is 1 ≤ x ≤ 12
The cost for 7 hours is:
f(7) = 6(7) + 14 = 46
Find out more on linear equation at: brainly.com/question/14323743
Answer:it is c
Step-by-step explanation:
fjhrhgvfj
Answer:
(-8,-10)
Step-by-step explanation:
Rewrite (x+8)2(x+8)² as (x+8)(x+8).
f(x)=3((x+8)(x+8))−10
Expand (x+8) (x+8) using the FOIL Method.
Apply the distributive property.
f(x)=3(x(x+8)+8(x+8))−10
Apply the distributive property.
f(x)=3(x⋅x+x⋅8+8(x+8))−10
Apply the distributive property.
Simplify and combine like terms.
Simplify each term.
Multiply x by x.
f(x)=3(x2+x⋅8+8x+8⋅8)−10
Move 8 to the left of x.
f(x)=3(x2+8⋅x+8x+8⋅8)−10
Multiply 8 by 8.
f(x)=3(x2+8x+8x+64)−10
Add 8x and 8x.
f(x)=3(x2+16x+64)−10
Apply the distributive property.
f(x)=3x2+3(16x)+3⋅64−10
Simplify.
Multiply 16 by 3.
f(x)=3x2+48x+3⋅64−10
Multiply 3 by 64.
f(x)=3x2+48x+192−10
Subtract 10 from 192.
f(x)=3x2+48x+182
The minimum of a quadratic function occurs at x=
If a is positive, the minimum value of the function is f (
).
Substitute in the values of aa and b.
x=−
x=-8
Replace the variable x with −8 in the expression.
f(−8)=3(−8)2+48(−8)+182
Y=-10
Therefore, the minimum value is (-8,-10) but if it is asking for just the y-value it would be -10.
Answer:
5%
Step-by-step explanation:
1 person will be selected out of a total of 20 (you + 19)
The probability is 1/20 = 0.05 = 5%