Answer:

Step-by-step explanation:
![\sf 2x + 4(7-x) \\\\Resolving \ Parenthesis\\\\2x + 28-4x \\\\Combining\ like\ terms\\\\2x-4x +28\\\\-2x + 28\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%202x%20%2B%204%287-x%29%20%20%5C%5C%5C%5CResolving%20%5C%20Parenthesis%5C%5C%5C%5C2x%20%2B%2028-4x%20%5C%5C%5C%5CCombining%5C%20like%5C%20terms%5C%5C%5C%5C2x-4x%20%2B28%5C%5C%5C%5C-2x%20%2B%2028%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
![\sf \\12x-(4+2x)\\\\12x-4-2x\\\\Combining \ like \ terms\\\\12x-2x - 4\\\\10x-4 \\\\\rule[22]{225}{2} \\2(10-x)+3(12-x) \\\\Resolving \ Parenthesis\\\\20-2x + 36 -3x\\\\Combining \ like \ terms\\\\20+36 -2x-3x\\\\56 - 5x \\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20%5C%5C12x-%284%2B2x%29%5C%5C%5C%5C12x-4-2x%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C12x-2x%20-%204%5C%5C%5C%5C10x-4%20%5C%5C%5C%5C%5Crule%5B22%5D%7B225%7D%7B2%7D%20%5C%5C2%2810-x%29%2B3%2812-x%29%20%5C%5C%5C%5CResolving%20%5C%20Parenthesis%5C%5C%5C%5C20-2x%20%2B%2036%20-3x%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C20%2B36%20-2x-3x%5C%5C%5C%5C56%20-%205x%20%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
![\sf 7(x-1)-6(x+1)\\\\Resolving \ Parethesis\\\\7x-7-6x-6\\\\Combining \ like \ terms\\\\7x-6x-7-6\\\\x - 13\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%207%28x-1%29-6%28x%2B1%29%5C%5C%5C%5CResolving%20%5C%20Parethesis%5C%5C%5C%5C7x-7-6x-6%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C7x-6x-7-6%5C%5C%5C%5Cx%20-%2013%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
~AnonymousHelper1807
<em>The </em><em>right</em><em> answer</em><em> is</em><em> </em><em>of </em><em>option</em><em> </em><em>D.</em>
<em>
</em>
<em>In </em><em>the </em><em>given </em><em>graph,</em><em> </em><em>X </em><em>is </em><em>greater </em><em>than </em><em>4</em><em> </em><em>and </em><em>X </em><em>equals </em><em>to </em><em>4</em><em>.</em>
<em>Hope </em><em>it</em><em> helps</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>
Answer:
π
V-foam = 4r³( 2 - ----- )
3
Step-by-step explanation:
Let the radius of the sphere be r. Then the volume of the sphere is
V = (4/3)(π)(r³).
Next, recognize that the side length of the cube is 2r, and that the volume of the cube is thus
V = (2r)³, or 8r³.
Then the volume of the foam is equal to the volume of the cube less the volume of the sphere:
V-foam = 8r³ - (4/3)(π)(r³). This could be factored into
π
V-foam = 4r³( 2 - ----- )
3
Answer:
-502/3
Step-by-step explanation: