Answer:
(- 5, 1 )
Step-by-step explanation:
- 6x - 14y = 16 → (1)
- 2x + 7y = 17 → (2)
Multiplying (2) by - 3 and adding to (1) will eliminate the x- term
6x - 21y = - 51 → (3)
Add (1) and (3) term by term to eliminate x
0 - 35y = - 35
- 35y = - 35 ( divide both sides by - 35 )
y = 1
Substitute y = 1 into either of the 2 equations and solve for x
Substituting into (1)
- 6x - 14(1) = 16
- 6x - 14 = 16 ( add 14 to both sides )
- 6x = 30 ( divide both sides by - 6 )
x = - 5
solution is (- 5, 1 )
Sorry people send you links instead of actually helping you
For line B to AC: y - 6 = (1/3)(x - 4); y - 6 = (x/3) - (4/3); 3y - 18 = x - 4, so 3y - x = 14
For line A to BC: y - 6 = (-1)(x - 0); y - 6 = -x, so y + x = 6
Since these lines intersect at one point (the orthocenter), we can use simultaneous equations to solve for x and/or y:
(3y - x = 14) + (y + x = 6) => 4y = 20, y = +5; Substitute this into y + x = 6: 5 + x = 6, x = +1
<span>So the orthocenter is at coordinates (1,5), and the slopes of all three orthocenter lines are above.</span>
Maybe you meant solve for x?
If so, the answer is 4