5pi/12 radians
The arc measure is 75, so theta must also be the same. if theta is 75, and 75 in radians is 5pi/12 radians, then the answer is that.
Answer:
n = -5
Step-by-step explanation:
Solve for n:
n + 2 = 4 n + 17
Hint: | Move terms with n to the left hand side.
Subtract 4 n from both sides:
(n - 4 n) + 2 = (4 n - 4 n) + 17
Hint: | Combine like terms in n - 4 n.
n - 4 n = -3 n:
-3 n + 2 = (4 n - 4 n) + 17
Hint: | Look for the difference of two identical terms.
4 n - 4 n = 0:
2 - 3 n = 17
Hint: | Isolate terms with n to the left hand side.
Subtract 2 from both sides:
(2 - 2) - 3 n = 17 - 2
Hint: | Look for the difference of two identical terms.
2 - 2 = 0:
-3 n = 17 - 2
Hint: | Evaluate 17 - 2.
17 - 2 = 15:
-3 n = 15
Hint: | Divide both sides by a constant to simplify the equation.
Divide both sides of -3 n = 15 by -3:
(-3 n)/(-3) = 15/(-3)
Hint: | Any nonzero number divided by itself is one.
(-3)/(-3) = 1:
n = 15/(-3)
Hint: | Reduce 15/(-3) to lowest terms. Start by finding the GCD of 15 and -3.
The gcd of 15 and -3 is 3, so 15/(-3) = (3×5)/(3 (-1)) = 3/3×5/(-1) = 5/(-1):
n = 5/(-1)
Hint: | Simplify the sign of 5/(-1).
Multiply numerator and denominator of 5/(-1) by -1:
Answer: n = -5
B i cant really tell how because thats hard for me to do but it is b
Answer:
BE
Step-by-step explanation:
This is because it is the part of a line that has two endpoints and is finite in length.