Answer:
240
Step-by-step explanation:
fifteen lots of sixteen = 15x16
15x16=240
Answer:
AY=8, XZ=20
Step-by-step explanation:
WY=WA+AY, plug in values: 14=6+AY, subtract 6 from both sides: 8=AY, AY=8cm
ZA=10cm and WY bisects XZ at A, so XA=ZA and XZ = XA+ZA = 2ZA =2*10 = 20 cm
Answer:
(2,6)
Step-by-step explanation:
Option:B
The triangle is rotated 90 degree clockwise around the point (0,0). The point is (-6,2) is made to rotate. The image so formed is at the point (2,6).
Step-by-step explanation:
is an irracional number it has infinetely many digits
you can factorize that as

a decimal aproach is
4.828...
Answer:
A. We have two lines: y = 2-x and y = 4x+3 Given two simultaneous equations that are both required to be true.. the solution is the points where the lines cross... Which is where the two equations are equal.. Thus the solution that works for both equations is when 2-x = 4x+3 because where that is true is where the two lines will cross and that is the common point that satisfies both equations. B. 2-x = 4x+3 x 2-x 4x+3
______________
-3 5 -9
-2 4 -5
-1 3 -1
0 2 3
1 1 7
2 0 11
3 -1 15
The table shows that none of the integers from [-3,3] work because in no case does
2-x = 4x+3 To find the solution we need to rearrange the equation to the form x=n 2-x = 4x+3 2 -x + x = 4x + x +3 2 = 5x + 3 2-3 = 5x +3-3 5x = -1 x = -1/5 The only point that satisfies both equations is where x = -1/5 Find y: y = 2-x = 2 - (-1/5) = 2 + 1/5 = 10/5 + 1/5 = 11/5 Verify we get the same in the other equation y = 4x + 3 = 4(-1/5) + 3 = -4/5 + 15/5 = 11/5 Thus the only actual solution, being the point where the lines cross, is the point (-1/5, 11/5) C. To solve graphically 2-x=4x+3 we would graph both lines... y = 2-x and y = 4x+3 The point on the graph where the lines cross is the solution to the system of equations ... [It should be, as shown above, the point (-1/5, 11/5)] To graph y = 2-x make a table.... We have already done this in part B x 2-x x 4x+3 _______ ________ -1 3 -1 -1 0 2 0 3 1 1 1 7 Just graph the points on a cartesian coordinate system and draw the two lines. The solution is, as stated, the point where the two lines cross on the graph.
Hope this helps.
Step-by-step explanation: