1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
15

Simply this equation ​

Mathematics
2 answers:
Liono4ka [1.6K]3 years ago
3 0

Answer:

b= x

Step-by-step explanation:

\boxed{ {x}^{m}  \times  {x}^{n}  =  {x}^{m + n} }

Applying the law of indices above:

b =  {x}^{ \frac{1}{4} }  \times  {x}^{ \frac{3}{4} }

b =  {x}^{ \frac{1}{4}  +  \frac{3}{4} }

b =  {x}^{ \frac{4}{4} }

b =  {x}^{1}

∴b= x

Montano1993 [528]3 years ago
3 0

Answer:

<u>It</u><u> </u><u>is</u><u> </u><u>b</u><u> </u><u>=</u><u> </u><u>x</u>

Step-by-step explanation:

From law of indices:

{a}^{b}  \times  {a}^{c}  =  {a}^{(b + c)}

for, multiplication: same coefficients, we sum up the powers.

b =   {x}^{ \frac{1}{4} }  \times  {x}^{ \frac{3}{4} }  \\ b =  {x}^{( \frac{1}{4} +  \frac{3}{4} ) }  \\ b =  {x}^{ \frac{4}{4} }  \\ b =  {x}^{1}  \\ b = x

You might be interested in
Find the area of the part of the paraboloid z = 9 - x^2 - y^2 that lies above the xy-plane.
svetoff [14.1K]

Parameterize this surface (call it S) by

\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+(9-u^2)\,\vec k

with 0\le u\le3 and 0\le v\le2\pi. Take the normal vector to S to be

\vec r_u\times\vec r_v=2u^2\cos v\,\vec\imath+2u^2\sin v\,\vec\jmath+u\,\vec k

Then the area of S is

\displaystyle\iint_S\mathrm dA=\iint_S\|\vec r_u\times\vec r_v\|\,\mathrm du\,\mathrm dv

=\displaystyle\int_0^{2\pi}\int_0^3u\sqrt{1+4u^2}\,\mathrm du\,\mathrm dv

=\displaystyle2\pi\int_0^3u\sqrt{1+4u^2}\,\mathrm du=\boxed{\frac{37\sqrt{37}-1}6\pi}

3 0
4 years ago
29.
Elis [28]

Answer:

Sum of their present ages  = 20 years

Step-by-step explanation:

Present age :

   Neha's age = x years

Reemas' age = x - 4

After 5 years:

       Neha's age = (x +5) years

       Reemas' age = (x - 4 + 5 ) = x + 1

Sum of the ages of Reema and Neha will be 30

Therefore,    

x + 5  + x + 1 = 30

x + x + 5 + 1 = 30

   2x +  6    = 30

            2x = 30 - 6

           2x = 24

             x = 24/2

            x = 12

Neha's age = 12 years

Reema's age = 12 - 4 = 8 years

Sum of their present ages = 12 + 8 = 20 years

4 0
3 years ago
7. Construct a pie chart to depict the data given below:
marta [7]

aku gak tau apa Jawaban nya Jadi aku Minta maaf

8 0
3 years ago
Did I do this right? (Accounting)
levacccp [35]
Yes you did, congratulations ;-)
4 0
3 years ago
I honestly need help with these
Brilliant_brown [7]

9. The curve passes through the point (-1, -3), which means

-3 = a(-1) + \dfrac b{-1} \implies a + b = 3

Compute the derivative.

y = ax + \dfrac bx \implies \dfrac{dy}{dx} = a - \dfrac b{x^2}

At the given point, the gradient is -7 so that

-7 = a - \dfrac b{(-1)^2} \implies a-b = -7

Eliminating b, we find

(a+b) + (a-b) = 3+(-7) \implies 2a = -4 \implies \boxed{a=-2}

Solve for b.

a+b=3 \implies b=3-a \implies \boxed{b = 5}

10. Compute the derivative.

y = \dfrac{x^3}3 - \dfrac{5x^2}2 + 6x - 1 \implies \dfrac{dy}{dx} = x^2 - 5x + 6

Solve for x when the gradient is 2.

x^2 - 5x + 6 = 2

x^2 - 5x + 4 = 0

(x - 1) (x - 4) = 0

\implies x=1 \text{ or } x=4

Evaluate y at each of these.

\boxed{x=1} \implies y = \dfrac{1^3}3 - \dfrac{5\cdot1^2}2 + 6\cdot1 - 1 = \boxed{y = \dfrac{17}6}

\boxed{x = 4} \implies y = \dfrac{4^3}3 - \dfrac{5\cdot4^2}2 + 6\cdot4 - 1 \implies \boxed{y = \dfrac{13}3}

11. a. Solve for x where both curves meet.

\dfrac{x^3}3 - 2x^2 - 8x + 5 = x + 5

\dfrac{x^3}3 - 2x^2 - 9x = 0

\dfrac x3 (x^2 - 6x - 27) = 0

\dfrac x3 (x - 9) (x + 3) = 0

\implies x = 0 \text{ or }x = 9 \text{ or } x = -3

Evaluate y at each of these.

A:~~~~ \boxed{x=0} \implies y=0+5 \implies \boxed{y=5}

B:~~~~ \boxed{x=9} \implies y=9+5 \implies \boxed{y=14}

C:~~~~ \boxed{x=-3} \implies y=-3+5 \implies \boxed{y=2}

11. b. Compute the derivative for the curve.

y = \dfrac{x^3}3 - 2x^2 - 8x + 5 \implies \dfrac{dy}{dx} = x^2 - 4x - 8

Evaluate the derivative at the x-coordinates of A, B, and C.

A: ~~~~ x=0 \implies \dfrac{dy}{dx} = 0^2-4\cdot0-8 \implies \boxed{\dfrac{dy}{dx} = -8}

B:~~~~ x=9 \implies \dfrac{dy}{dx} = 9^2-4\cdot9-8 \implies \boxed{\dfrac{dy}{dx} = 37}

C:~~~~ x=-3 \implies \dfrac{dy}{dx} = (-3)^2-4\cdot(-3)-8 \implies \boxed{\dfrac{dy}{dx} = 13}

12. a. Compute the derivative.

y = 4x^3 + 3x^2 - 6x - 1 \implies \boxed{\dfrac{dy}{dx} = 12x^2 + 6x - 6}

12. b. By completing the square, we have

12x^2 + 6x - 6 = 12 \left(x^2 + \dfrac x2\right) - 6 \\\\ ~~~~~~~~ = 12 \left(x^2 + \dfrac x2 + \dfrac1{4^2}\right) - 6 - \dfrac{12}{4^2} \\\\ ~~~~~~~~ = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4

so that

\dfrac{dy}{dx} = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4 \ge 0 \\\\ ~~~~ \implies 12 \left(x + \dfrac14\right)^2 \ge \dfrac{27}4 \\\\ ~~~~ \implies \left(x + \dfrac14\right)^2 \ge \dfrac{27}{48} = \dfrac9{16} \\\\ ~~~~ \implies \left|x + \dfrac14\right| \ge \sqrt{\dfrac9{16}} = \dfrac34 \\\\ ~~~~ \implies x+\dfrac14 \ge \dfrac34 \text{ or } -\left(x+\dfrac14\right) \ge \dfrac34 \\\\ ~~~~ \implies \boxed{x \ge \dfrac12 \text{ or } x \le -1}

13. a. Compute the derivative.

y = x^3 + x^2 - 16x - 16 \implies \boxed{\dfrac{dy}{dx} = 3x^2 - 2x - 16}

13. b. Complete the square.

3x^2 - 2x - 16 = 3 \left(x^2 - \dfrac{2x}3\right) - 16 \\\\ ~~~~~~~~ = 3 \left(x^2 - \dfrac{2x}3 + \dfrac1{3^2}\right) - 16 - \dfrac13 \\\\ ~~~~~~~~ = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3

Then

\dfrac{dy}{dx} = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3 \le 0 \\\\ ~~~~ \implies 3 \left(x - \dfrac13\right)^2 \le \dfrac{49}3 \\\\ ~~~~ \implies \left(x - \dfrac13\right)^2 \le \dfrac{49}9 \\\\ ~~~~ \implies \left|x - \dfrac13\right| \le \sqrt{\dfrac{49}9} = \dfrac73 \\\\ ~~~~ \implies x - \dfrac13 \le \dfrac73 \text{ or } -\left(x-\dfrac13\right) \le \dfrac73 \\\\ ~~~~ \implies \boxed{x \le 2 \text{ or } x \ge \dfrac83}

5 0
2 years ago
Other questions:
  • A large pharmaceutical company is trying to determine whether a drug aptly named Recall-Pro can increase your short-term memory
    13·1 answer
  • The centroid of a triangle is found by constructing the _____.
    6·2 answers
  • The winner of a raffle will receive a new car. If 10,000 raffle tickets were sold and you purchased 26 tickets, what are the odd
    7·2 answers
  • The graph shows how many miles Barrett traveled over a 5 hour time frame. The point (1,50) is on the graph what is the unit rate
    6·1 answer
  • 8. A contractor plans to brace a radio antenna with another cable. Cable X is already attached to the antenna at a height of 60
    13·1 answer
  • Solve: 1/4 a = 4/15 ​
    12·1 answer
  • Solve the equation by completing the square (x+2)(x-3)=(x-3)
    8·1 answer
  • Find the equation for a polynomial f(x) that satisfies the following:
    12·1 answer
  • A cloth bag holds 4 letter tiles: A, E, S, and T. Elliot selects each tile at random, one tile at a time. What is the probabilit
    6·2 answers
  • Noah thinks the answers to these two questions will be the same. This year, a herd of bison had a 10% increase in population. If
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!