Answer:
the values of x, y and z are x= 2, y =-1 and z=1
Step-by-step explanation:
We need to solve the following system of equations.
We will use elimination method to solve these equations and find the values of x, y and z.
2x + 2y + 5z = 7 eq(1)
6x + 8y + 5z = 9 eq(2)
2x + 3y + 5z = 6 eq(3)
Subtracting eq(1) and eq(3)
2x + 2y + 5z = 7
2x + 3y + 5z = 6
- - - -
_____________
0 -y + 0 = 1
-y = 1
=> y = -1
Subtracting eq(2) and eq(3)
6x + 8y + 5z = 9
2x + 3y + 5z = 6
- - - -
______________
4x + 5y +0z = 3
4x + 5y = 3 eq(4)
Putting value of y = -1 in equation 4
4x + 5y = 3
4x + 5(-1) = 3
4x -5 = 3
4x = 3+5
4x = 8
x= 8/4
x = 2
Putting value of x=2 and y=-1 in eq(1)
2x + 2y + 5z = 7
2(2) + 2(-1) + 5z = 7
4 -2 + 5z = 7
2 + 5z = 7
5z = 7 -2
5z = 5
z = 5/5
z = 1
So, the values of x, y and z are x= 2, y =-1 and z=1
Answer:
He is 13 years old
Step-by-step explanation:
32-45=-13
the opposite of -13 is positive 13
The new cost would be 1661.175 if u want it rounded it would be 1661.18 because you would need to do 1444.5 x .15 and then add that to 1444.5
Step-by-step explanation:
step 1. ABCD is an isosceles trapezoid because AD and BC are parallel, AB and CD are congruent
step 2. x = 56° (definition of an isosceles trapezoid)
step 3. x + y + z + 56 = 360 (definition of a quadrilateral)
step 4. y = z (definition of an isosceles trapezoid)
step 5. 56 + 2y + 56 = 360
step 6. 2y = 248
step 7. y = 124°, z = 124°.
Answer:
The matched options to the given problem is below:
Step1: Choose a point on the parabola
Step2: Find the distance from the focus to the point on the parabola.
Step3: Use (x, y).
Find the distance from the point on the parabola to the directrix.
Step4: Set the distance from focus to the point equal to the distance from directrix to the point.
Step5: Square both sides and simplify.
Step6: Write the equation of the parabola.
Step by step Explanation:
Given that the focus (-1,2) and directrix x=5
To find the equation of the parabola:
By using focus directrix property of parabola
Let S be a point and d be line
focus (-1,2) and directrix x=5 respectively
If P is any point on the parabola then p is equidistant from S and d
Focus S=(-1,2), d:x-5=0]