Answer:
30
Step-by-step explanation:
I believe it would be 30 degrees because it is opposite of mAGB.
Three students want to estimate the mean backpack weight of their schoolmates. To do this, they each randomly chose 8 schoolmates and weighed their backpacks. Then as per the given sample data,
(a) The sample means of the backpacks are: 6.375,6.375,6.625
(b) Range of sample means: 0.25
(c)The true statement is: The closer the range of the sample means is to 0, the less confident they can be in their estimate.
For the first sample, mean= 6.375
For the second sample, mean= 6.375
For the third sample, mean= 6.625
Range of sample means=Maximum Mean- Minimum Mean
= 6.625 - 6.375
= 0.25
The students will estimate the average backpack weight of their classmates using sample means, the true statement is:
The closer the range of the sample means is to 0, the more confident they can be in their estimate.
Learn more about range here:
brainly.com/question/24326172
#SPJ1
T = 2 π / | 4/7 |
T = 2 π / 4/7
T = 2 π × 7 / 4
T = 7 π / 2
Thus the correct answer is option A .
Answer:
a) 0.50575,
b) 0.042
Step-by-step explanation:
Example 1.5. A person goes shopping 3 times. The probability of buying a good product for the first time is 0.7.
If the first time you can buy good products, the next time you can buy good products is 0.85; (I interpret this as, if you buy a good product, then the next time you buy a good product is 0.85).
And if the last time I bought a bad product, the next time I bought a good one is 0.6. Calculate the probability that:
a) All three times the person bought good goods.
P(Good on 1st shopping event AND Good on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Good on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st and 2nd shopping events yield Good) =
(0.7)(0.85)(0.85) =
0.50575
b) Only the second time that person buys a bad product.
P(Good on 1st shopping event AND Bad on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Bad on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st is Good and 2nd is Bad shopping events) =
(0.7)(1-0.85)(1-0.6) =
(0.7)(0.15)(0.4) =
0.042