m∠FDE = 52°
Solution:
Given data:
DE ≅ DF, CD || BE, BC || FD and m∠ABF = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠ABF + m∠CBF = 180°
116° + m∠CBF = 180°
m∠CBF = 64°
If CD || BE, then CD || BF.
Hence CD || BE and BE || FD.
Therefore BFCD is a parallelogam.
<em>In parallelogram, Adjacent angles form a linear pair.</em>
m∠CBF + m∠BFD = 180°
64° + m∠BFD = 180°
m∠BFD = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠BFD + m∠DFE = 180°
116° + m∠DFE = 180°
m∠DFE = 64°
we know that DE ≅ DF.
<em>In triangle, angles opposite to equal sides are equal.</em>
m∠DFE = m∠DEF
m∠DEF = 64°
<em>sum of all the angles of a triangle = 180°</em>
m∠DFE + m∠DEF + m∠FDE = 180°
64° + 64° + m∠FDE = 180°
m∠FDE = 52°
Answer: x = 2
<u>Step-by-step explanation:</u>
********************************************************************************
Answer: x = 0
<u>Step-by-step explanation:</u>
********************************************************************************
Answer: No Solution
<u>Step-by-step explanation:</u>
********************************************************************************
Answer: No Solution
<u>Step-by-step explanation:</u>
<u></u>
<u />
I don't understand life anymore....
Answer:
0
Step-by-step explanation:
Given a function in a table or in algebraic or graphical form, identify key features such as x- and y-intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior. Use key features of an algebraic function to graph the function.