Answer:
7..the way you worded the options was confusing
9514 1404 393
Answer:
C. 12cm
Step-by-step explanation:
The equation for the perimeter of the rectangle is ...
P = 2(L+W)
34 = 2(n +m)
Solving for m, we get
m = 17 -n . . . . . . . divide by 2, subtract n
__
The Pythagorean theorem gives the relationship between the sides and the hypotenuse
m^2 +n^2 = (n+1)^2
(17 -n)^2 +n^2 = (n +1)^2 . . . . . . substitute for m
289 -34n +n^2 +n^2 = n^2 +2n +1 . . . . eliminate parentheses
n^2 -36n +288 = 0 . . . . . . . put in standard form
(n -12)(n -24) = 0 . . . . . . . . . factor
n = 12 . . . . . . . . . . n=24 is an extraneous solution here
The value of n is 12 cm.
Hey ! there
Answer:
- <u>1</u><u>1</u><u>3</u><u>.</u><u>0</u><u>4</u><u> </u><u>unit </u><u>cube</u>
Step-by-step explanation:
In this question we are provided with a sphere <u>having</u><u> </u><u>radius </u><u>3 </u><u>units </u>and <u>value </u><u>of </u><u>π </u><u>is </u><u>3.</u><u>1</u><u>4</u><u> </u><u>.</u><u> </u>And we're asked to find the<u> </u><u>volume</u><u> of</u><u> </u><u>sphere</u><u> </u><u>.</u>
For finding volume of sphere , we need to know its formula . So ,

<u>Where</u><u> </u><u>,</u>
- π refers to <u>3.</u><u>1</u><u>4</u>
- r refers to <u>radius</u><u> of</u><u> sphere</u>
<u>Sol</u><u>u</u><u>tion </u><u>:</u><u> </u><u>-</u>
Now , we are substituting value of π and radius in the formula ,

Simplifying it ,

Cancelling 3 with 3 :

We get ,

Multiplying 4 and 3.14 :

Multiplying 12.56 and 9 :

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>sphere</u><u> </u><u>having </u><u>radius </u><u>3 </u><u>units </u><u>is </u><em><u>1</u></em><em><u>1</u></em><em><u>3</u></em><em><u> </u></em><em><u>.</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>units </u></em><em><u>cube </u></em><em><u>.</u></em>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
G:{3,4,6}->{0,9}
The pairs represent the input (first number in each pair) and the result (second nu.ber in each pair) for the relation G. for example G(3)=9.
The domain is the set of values that the relation can act upon. The range is the set of the values the results can take
How can we help you with this?