The function (fg)(x) is a composite function
The value of the function (fg)(x) is 2x^3 + 7x^2 - 19x - 20
<h3>How to determine the function (fg)(x)?</h3>
The functions are given as:
f(x) = 2x^2 - 3x - 4 and g(x) = x + 5.
To calculate (fg)(x), we make use of
(fg)(x) = f(x) * g(x)
So, we have:
(fg)(x) = (2x^2 - 3x - 4) * (x + 5)
Expand
(fg)(x) = 2x^3 - 3x^2 - 4x + 10x^2 - 15x - 20
Collect like terms
(fg)(x) = 2x^3 - 3x^2 + 10x^2 - 4x - 15x - 20
Evaluate
(fg)(x) = 2x^3 + 7x^2 - 19x - 20
Hence, the function (fg)(x) is 2x^3 + 7x^2 - 19x - 20
Read more about composite function at:
brainly.com/question/10687170
Answer:
(a) the interest is $6384
Hope this helps!
Answer:
41 i think i hope this is right
Step-by-step explanation:
Answer:
b = -3/2
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define Equation</u>
2b + 5 = 2
<u>Step 2: Solve for </u><em><u>b</u></em>
- Subtract 5 on both sides: 2b = -3
- Divide 2 on both sides: b = -3/2
the answer of the question is tens