1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Whitepunk [10]
3 years ago
8

\lim _{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Mathematics
1 answer:
Vinvika [58]3 years ago
6 0

\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives

\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)

This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}

Now recall two well-known limits:

\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0

Compute each remaining limit:

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23

\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23

\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13

\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13

\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0

So, the original limit has a value of

2/3 + 2/3 + 1/3 + 1/3 - 0 = 2

You might be interested in
Need ko na po this now<br><br>please answer this question<br><br>thank you po​
Umnica [9.8K]

Answer:

B.

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
12,<br> Is this a discrete?
a_sh-v [17]
Yes it is a discrete
3 0
3 years ago
If the height of the tree trunk is 13 feet and the radius is 1.5 feet what is the volume in cubic feet round to the nearest 10th
Mumz [18]

Answer:

91.8 feet^3

Step-by-step explanation:

We can find out the area of a circle and then multiple that by the height to get the volume of the tree trunk (which is a cylinder).

Area of circle formula: pi x r^2

3.14 x 1.5^2 = 7.065

Now we can multiple it by the height and round to the nearest 10th.

7.065 x 13 = 91.845

91.845 -> 91.8

Hope this helps! Brainliest?

6 0
3 years ago
Read 2 more answers
Find the area of the figure. PLEASSEEEEEEEE!!!!!!!!
allochka39001 [22]

Given:

side length = 6 ft

To find:

The area of the figure

Solution:

Area of the square = side × side

                               = 6 × 6

Area of the square = 36 ft²

Diameter of the semi-circle = 6 ft

Radius of the semi-circle = 6 ÷ 2 = 3 ft

Area of the semi-circle = \frac{1}{2} \pi r^2

                                      $=\frac{1}{2} \times 3.14 \times 3^2

Area of the semi-circle = 14.13 ft²

Area of the figure = Area of the square - Area of the semi-circle

                              = 36 ft² - 14.13 ft²

                              = 21.87 ft²

Area of the figure = 21.9 ft²

The area of the figure is 21.9 ft².

5 0
3 years ago
Someone please help me! ‘The value of X is...’
8_murik_8 [283]
This is called a double equation. If you solve for X, you would get 'any whole number.'
7 0
3 years ago
Other questions:
  • −4x−7+10x=−7+6x how many solutions
    15·1 answer
  • In the formula, V = LWH, if L = 28, and W and H are equal, and V = 252, what is W?
    15·1 answer
  • WHAT IS 6÷3+9^2−4? PLS ANSWER
    11·2 answers
  • Solve for x show your work plz i really need help thank you...
    9·1 answer
  • Pia printed 2 maps of a walking trail. The length of the trail on the first map is 8 cm. The length of the trail on the second m
    5·1 answer
  • Panel of judges was asked to judge the quality of different kinds of potato chips. The scatterplot and regression line below sho
    13·1 answer
  • Graph the line. 2x + y = -4 <br> I need the first 2 points to plot
    10·2 answers
  • Can anyone help me answer this?
    15·1 answer
  • Write equivalent expressions in factored form<br> 2x + 8y
    10·1 answer
  • Can someone please help me with this????<br> Thanks
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!