A) The biggest astronomical object is the Universe, which contains billions of galaxies among which there is the Milky Way.
The Milky Way contains thousands of planetary systems, among which the Solar System.
The Solar System contains many <span>planets <span>(but only one star, the Sun)</span>,</span> among which there is Earth.
Therefore you can label:
A = Universe, B = Milky Way, C = Solar system, D = Earth
b) Given what we said before, you could label D also any other planet in the Solar System, therefore you can choose among Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune.
The force of gravity between the astronauts is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
are the masses of the two objects
r is the separation between them
In this problem, we have two astronauts, whose masses are:

While the separation between the astronauts is
r = 2 m
Substituting into the equation, we can find the gravitational force between the two astronauts:

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s
<span>Energy exists as light, heat, sound, mass, moving objects, gravity, fuel, chemicals, and electricity.</span>