Ocean currents are formed by a type of heat transfer that is convection
Answer: The tidal forces exerted by the moon are directly associated with the earth's rotation. Due to the strong gravitational pull of the moon, the tidal bulging appears on both the sides on earth and these are region of high tide, and there is gradual rise and fall of sea level.
Because of these tidal effect, the earth is able to rotate only once in each of the orbital period.
The addition of vectors involve both magnitude and direction. In this case, we make use of a triangle to visualize the problem. The length of two sides were given while the measure of the angle between the two sides can be derived. We then assign variables for each of the given quantities.
Let:
b = length of one side = 8 m
c = length of one side = 6 m
A = angle between b and c = 90°-25° = 75°
We then use the cosine law to find the length of the unknown side. The cosine law results to the formula: a^2 = b^2 + c^2 -2*b*c*cos(A). Substituting the values, we then have: a = sqrt[(8)^2 + (6)^2 -2(8)(6)cos(75°)]. Finally, we have a = 8.6691 m.
Next, we make use of the sine law to get the angle, B, which is opposite to the side B. The sine law results to the formula: sin(A)/a = sin(B)/b and consequently, sin(75)/8.6691 = sin(B)/8. We then get B = 63.0464°. However, the direction of the resultant vector is given by the angle Θ which is Θ = 90° - 63.0464° = 26.9536°.
In summary, the resultant vector has a magnitude of 8.6691 m and it makes an angle equal to 26.9536° with the x-axis.
"the field of force surrounding a body of finite mass in which anotherbody would experience an attractive force that is proportional to theproduct of the masses and inversely proportional to the square of thedistance between <span>them."
</span>
Answer:
1.65
Explanation:
The equation of the forces along the horizontal direction is:
(1)
where
F = 65 N is the force applied with the push
is the frictional force
m = 4 kg is the mass
is the acceleration
The force of friction can be written as (2), where
is the coefficient of kinetic friction
R is the normal force exerted by the floor
The equation of forces along the vertical direction is
(3)
since the bookcase is in equilibrium. Substituting (2) and (3) into (1), we find
And solving for ,