Answer:
x = 18
Step-by-step explanation:
We need to find the value of x.
We know that the sum of angles of a triangle is equal to 180°. So, using this property,
2x+1+3x-1+90 = 180
2x+3x = 180-90
5x = 90
x = 18
So, the value of x is equal to 18.
Answer:
x = 104° because they are alternate interior angles and alternate interior angles are equal
Step-by-step explanation:
Answer:
I can even see anything can you reupload your answer, please?
Step-by-step explanation:
Answer:
Percent: 20%
Fraction: 1/5
Decimal: 0.20
Step-by-step explanation:
8:40*100 =
( 8*100):40 =
800:40 = 20%
Percent to fraction:
20%=20/100
= 0.2
=0.2×10/10
=2/10
=1/5
Percent to decimal:
20/100 = 0.20
The valid conclusions for the manager based on the considered test is given by: Option
<h3>When do we perform one sample z-test?</h3>
One sample z-test is performed if the sample size is large enough (n > 30) and we want to know if the sample comes from the specific population.
For this case, we're specified that:
- Population mean =
= $150 - Population standard deviation =
= $30.20 - Sample mean =
= $160 - Sample size = n = 40 > 30
- Level of significance =
= 2.5% = 0.025 - We want to determine if the average customer spends more in his store than the national average.
Forming hypotheses:
- Null Hypothesis: Nullifies what we're trying to determine. Assumes that the average customer doesn't spend more in the store than the national average. Symbolically, we get:

- Alternate hypothesis: Assumes that customer spends more in his store than the national average. Symbolically

where
is the hypothesized population mean of the money his customer spends in his store.
The z-test statistic we get is:

The test is single tailed, (right tailed).
The critical value of z at level of significance 0.025 is 1.96
Since we've got 2.904 > 1.96, so we reject the null hypothesis.
(as for right tailed test, we reject null hypothesis if the test statistic is > critical value).
Thus, we accept the alternate hypothesis that customer spends more in his store than the national average.
Learn more about one-sample z-test here:
brainly.com/question/21477856