The question is a little blurry. I can't read it.
Answer:
System of linear equations

a: adult ticket price and c: child ticket price
Step-by-step explanation:
This system of equations can be used to find the price of the adult and child tickets.
We have two equations (one for each day) and two unknowns (adult ticket price and child ticket price).
Let a: adult ticket price and c: child ticket price,
we have for the first day that 3 adult tickets and 1 child ticket adds $38:

and for the second day we have that 2 adult tickets and 2 child tickets adds $52:

If we write this as a system of equations, we have:

Answer:
5.525
Step-by-step explanation:
1. (7x^(2))/(2x + 6) -:(3x - 5) / (x + 3) Solve Bold
(7x^(2)) / (2x + 6) -:(3x - 5) / (x + 3)
2. 49x / 8x - (-2x) / 3x Solve Bold
49x/8x-(-2x)/3x
3. 6.125 - .6 Solve Bold
Answer: 5.525
Answer:
2340
Step-by-step explanation:
Formulae for sum of interior angles is 180(n-2)
Whereby n=number of sides

Simplifying
(0.75x + 6) + -1(2.5x + -1.9) = 0
Reorder the terms:
(6 + 0.75x) + -1(2.5x + -1.9) = 0
Remove parenthesis around (6 + 0.75x)
6 + 0.75x + -1(2.5x + -1.9) = 0
Reorder the terms:
6 + 0.75x + -1(-1.9 + 2.5x) = 0
6 + 0.75x + (-1.9 * -1 + 2.5x * -1) = 0
6 + 0.75x + (1.9 + -2.5x) = 0
Reorder the terms:
6 + 1.9 + 0.75x + -2.5x = 0
Combine like terms: 6 + 1.9 = 7.9
7.9 + 0.75x + -2.5x = 0
Combine like terms: 0.75x + -2.5x = -1.75x
7.9 + -1.75x = 0
Solving
7.9 + -1.75x = 0
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-7.9' to each side of the equation.
7.9 + -7.9 + -1.75x = 0 + -7.9
Combine like terms: 7.9 + -7.9 = 0.0
0.0 + -1.75x = 0 + -7.9
-1.75x = 0 + -7.9
Combine like terms: 0 + -7.9 = -7.9
-1.75x = -7.9
Divide each side by '-1.75'.
x = 4.514285714
Simplifying
x = 4.514285714