25.00
-2.65
That is how you subtract 25 from 2.65
5^(x+7)=(1/625)^(2x-13)
We move all terms to the left:
5^(x+7)-((1/625)^(2x-13))=0
Domain of the equation: 625)^(2x-13))!=0
x∈R
We add all the numbers together, and all the variables
5^(x+7)-((+1/625)^(2x-13))=0
We multiply all the terms by the denominator
(5^(x+7))*625)^(2x+1-13))-((=0
We add all the numbers together, and all the variables
(5^(x+7))*625)^(2x-12))-((=0
We add all the numbers together, and all the variables
(5^(x+7))*625)^(2x=0
not sure if this is right :/
Answer:
1) multiplicative inverse of i = -i
2) Multiplicative inverse of i^2 = -1
3) Multiplicative inverse of i^3 = i
4) Multiplicative inverse of i^4 = 1
Step-by-step explanation:
We have to find multiplicative inverse of each of the following.
1) i
The multiplicative inverse is 1/i
if i is in the denominator we find their conjugate

So, multiplicative inverse of i = -i
2) i^2
The multiplicative inverse is 1/i^2
We know that i^2 = -1
1/-1 = -1
so, Multiplicative inverse of i^2 = -1
3) i^3
The multiplicative inverse is 1/i^3
We know that i^2 = -1
and i^3 = i.i^2

so, Multiplicative inverse of i^3 = i
4) i^4
The multiplicative inverse is 1/i^4
We know that i^2 = -1
and i^4 = i^2.i^2

so, Multiplicative inverse of i^4 = 1