Answer:
7.12 mm
Explanation:
From coulomb's law,
F = kqq'/r².................... Equation 1
Where F = force, k = proportionality constant, q and q' = The two point charges, r = distance between the two charges.
Make r the subject of the equation,
r = √(kqq'/F).......................... Equation 2
Given: q = q' = 75.0 nC = 75×10⁻⁹ C, F = 1.00 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute into equation 2
r = √[ (75×10⁻⁹ )²9.0×10⁹/1]
r = 75×10⁻⁹.√(9.0×10⁹)
r = (75×10⁻⁹)(9.49×10⁴)
r = 711.75×10⁻⁵
r = 7.12×10⁻³ m
r = 7.12 mm
Hence the distance between the point charge = 7.12 mm
Answer:
Conditioning two or three times will insure that the concentration of titrant is not changed by a stray drop of water.
Explanation:
"Check the tip of the buret for an air bubble. To remove an air bubble, whack the side of the buret tip while solution is flowing".
I: Current
V: Voltage
R: resistance
you’re welcome ;)
Answer:
6
Explanation:
This atom is sulfur (if the electrons are equal to the protons/not an ion). You can tell the number of valence electrons by looking at the individual shell. The first shell (1s) can only hold 2 electrons. The second shell (2s and 2p) can hold 8 electrons. The third shell (3s and 3p), which is the valence shell, only has 6 out of its possible 8 electrons, so this atom has 6 valence electrons.
Explanation:
As the charge of all electrons are equal, the repulsive force exerted by each of them is also going to be equal. So, as K has more electrons repulsing its valence electron than Na, it has greater electron shielding.