Let us make a list of all the details we have
We are given
The cost of each solid chocolate truffle = s
The cost of each cream centre chocolate truffle = c
The cos to each chocolate truffle with nuts = n
The first type of sweet box that contains 5 each of the three types of chocolate truffle costs $41.25
That is 5s+5c+5n = 41.25 (cost of each type of truffle multiplied by their respective costs and all added together)
The second type of sweet box that contains 10 solid chocolate trufles, 5 cream centre truffles and 10 chocolate truffles with nuts cost $68.75
That is 10s+5c+10n = $68.75
The third type of sweet box that contains 24 truffles evenly divided that is 12 each of solid chocolate truffle and chocolate truffle with nuts cost $66.00
That is 12s+12n=$66.00
Hence option C is the right set of equations that will help us solve the values of each chocolate truffle.
The answer is A that’s the answer
Answer:
Step-by-step explanation:
Triangle DEF is a right angle triangle.
From the given right angle triangle,
DE represents the hypotenuse of the right angle triangle.
With ∠E as the reference angle,
EF represents the adjacent side of the right angle triangle.
DF represents the opposite side of the right angle triangle.
To determine EF, we would apply
trigonometric ratio
Cos θ = opposite side/hypotenuse. Therefore,
Cos 49 = EF/8
EF = 8Cos49 = 8 × 0.6561
EF = 5.2488
Rounding to the nearest tenth, it becomes 5.2
We need the half-life of C-14 which is 5,730 years.
Now, we will need a half-life equation:
elapsed time = half-life * log (bgng amt / ending amt) / log 2
We'll say beginning amount = 100 and ending amount = 41
elapsed time = 5,730 * log (100/41) / log 2
elapsed time = 5,730 * log (
<span>
<span>
<span>
2.4390243902
</span>
</span>
</span>
) / 0.30102999566
elapsed time = 5,730 * 0.38721614327 / 0.30102999566
elapsed time =
<span>
<span>
</span></span><span><span><span>5,730 * 1.2863041851
</span>
</span>
</span>
<span>elapsed time = 7,370.523 years
Source:
http://www.1728.org/halflife.htm </span>
The height of the water tank is 6.
L x W x H = V (volume)
15 x 10 x 6 = 900 cubic feet