Area of a square is side length^2
Area = 15^ 2 = 15 x 15 = 225 square inches.
Answer:
<u>y'= 5x^4 + 5^x In(5)</u>
Step-by-step explanation:
<u>Differentiate</u><u> </u><u>with </u><u>Respect</u><u> </u><u>to</u><u> </u><u>x</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>In(</u><u>5</u><u>^</u><u>x</u><u>)</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>x </u><u>In(</u><u>5</u><u>)</u>
<u>with </u><u>respect</u><u> </u><u>to </u><u>x,</u><u> </u><u>we </u><u>have</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>y </u><u>In(</u><u>5</u><u>)</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>5</u><u>^</u><u>x</u><u> </u><u>In(</u><u>5</u><u>)</u>
The area of an equilateral triangle of side "s" is s^2*sqrt(3)/4. So the volume of the slices in your problem is
(x - x^2)^2 * sqrt(3)/4.
Integrating from x = 0 to x = 1, we have
[(1/3)x^3 - (1/2)x^4 + (1/5)x^5]*sqrt(3)/4
= (1/30)*sqrt(3)/4 = sqrt(3)/120 = about 0.0144.
Since this seems quite small, it makes sense to ask what the base area might be...integral from 0 to 1 of (x - x^2) dx = (1/2) - (1/3) = 1/6. Yes, OK, the max height of the triangles occurs where x - x^2 = 1/4, and most of the triangles are quite a bit shorter...
Answer:
See the proof below
Step-by-step explanation:
For this case we need to proof the following identity:

We need to begin with the definition of tangent:

So we can replace into our formula and we got:
(1)
We have the following identities useful for this case:


If we apply the identities into our equation (1) we got:
(2)
Now we can divide the numerator and denominato from expression (2) by
and we got this:

And simplifying we got:

And this identity is satisfied for all:

Answer: 5/10
Explanation: Compare the denominators. Since 2 ⋅ 5 = 10, multiply the numerator 1 by 5 to get 5.