The coordinates of the other endpoint are (-8, 18)
Answer:
i think its .625
Step-by-step explanation:
all you need to do to make a fraction into a decimal is divide the nominator by the denominator
H=2ft
d=6 ft
r=d/2
r=6/2=3ft
V= π•r^2•h
V=3.14•3^2•2
V=3.14•9•2
V=56.52 ft3
V~56.5ft3
Given:
Circle C and circle R are similar.
The length of arc AB is ![s = \frac{22 \pi}{9}](https://tex.z-dn.net/?f=s%20%3D%20%5Cfrac%7B22%20%5Cpi%7D%7B9%7D)
The radius of circle C (AC) = 4 unit
The radius of circle R (QR) =6 unit
To find the length of arc QP.
Formula
The relation between s, r and
is
![arclength = 2\pi r \frac{\theta}{360}](https://tex.z-dn.net/?f=arclength%20%3D%202%5Cpi%20r%20%5Cfrac%7B%5Ctheta%7D%7B360%7D)
where,
s be the length of the arc
r be the radius
be the angle.
Now,
For circle C
Taking r = 4
According to the problem,
![2 \pi r \frac{\theta}{360} = \frac{22 \pi}{9}](https://tex.z-dn.net/?f=2%20%5Cpi%20r%20%5Cfrac%7B%5Ctheta%7D%7B360%7D%20%3D%20%5Cfrac%7B22%20%5Cpi%7D%7B9%7D)
or,
[ eliminating
from both side]
or, ![\theta = \frac{(22)(360)}{(9)(2)(4)}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Cfrac%7B%2822%29%28360%29%7D%7B%289%29%282%29%284%29%7D)
or, ![\theta = 110^\circ](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20110%5E%5Ccirc)
Again,
For circle R
Taking, r = 6 and
we get,
The length of arc QP is
![arc length = 2\pi (6)(\frac{110}{360} )](https://tex.z-dn.net/?f=arc%20length%20%3D%202%5Cpi%20%286%29%28%5Cfrac%7B110%7D%7B360%7D%20%29)
or, ![arclength = \frac{11 \pi}{3}](https://tex.z-dn.net/?f=arclength%20%3D%20%5Cfrac%7B11%20%5Cpi%7D%7B3%7D)
Hence,
The length of QP is
. Option C.
D
Step-by-step explanation:
you subtract 15 and 11 = 4 then subtract 9-1 is 8 and then you find the common denominator