Answer:
123
Step-by-step explanation:
Answer:
The equation i came up with is $55= 7.8x - 47.20
The length of the altitude is ![8\sqrt{3}](https://tex.z-dn.net/?f=8%5Csqrt%7B3%7D)
Explanation:
Let ABC be an equilateral triangle.
It has sides of length 16 cm
Let AD be the altitude of the triangle.
We need to determine the length of an altitude.
Let AC = 16 cm and CD = 8 cm
Let us consider the right angled triangle ADC
Using the Pythagorean theorem, we have,
![AC^2=AD^2+DC^2](https://tex.z-dn.net/?f=AC%5E2%3DAD%5E2%2BDC%5E2)
Substituting the values, we get,
![16^2=AD^2+8^2](https://tex.z-dn.net/?f=16%5E2%3DAD%5E2%2B8%5E2)
![256=AD^2+64](https://tex.z-dn.net/?f=256%3DAD%5E2%2B64)
![192=AD^2](https://tex.z-dn.net/?f=192%3DAD%5E2)
![8\sqrt{3}=AD](https://tex.z-dn.net/?f=8%5Csqrt%7B3%7D%3DAD)
The length of the altitude is ![8\sqrt{3}](https://tex.z-dn.net/?f=8%5Csqrt%7B3%7D)
Answer:
Hope this helps
Step-by-step explanation:
a) x^2 + 3x = x(x+3)
b) 2x^2 - 8x = 2x(x - 4)
c) 6x + 9x^3 = 3x(2 + 3x^2)
d) 12x^3 - 4x^2 = 4x^2(3x - 1)