The discriminant is b²-4ac
when the discriminant is 0, there is only one solution.
Answer:
The cost of soft drink is $0.95
Step-by-step explanation:
Let the cost of hot dog be x
Cost of 2 hot dogs = 2x
Let the cost of soft drink be y
Cost of 3 soft drinks = 3y
At a cost restaurant the cost for a hot dog and a soft drink is $2.10.
So, x+y=2.10
The cost for two hot dogs and three soft drinks is $5.15
So, 2x+3y=5.15
Plot the lines on the graph:
x+y=2.10 --Purple line
2x+3y=5.15 --- Black Line
Intersection point =(x,y)=(1.15,0.95)
Hence The cost of soft drink is $0.95
Answer:
- (-16x² +10x -3) +(4x² -29x -2)
- (2x² -11x -9) -(14x² +8x -4)
- 2(x -1) -3(4x² +7x +1)
Step-by-step explanation:
I find it takes less work if I can eliminate obviously wrong answers. Toward that end, we can consider the constant terms only:
- -3 +(-2) = -5 . . . . possible equivalent
- -10 -5 = -15 . . . . NOT equivalent
- 3(-5) -2(5) = -25 . . . . NOT equivalent
- -9 -(-4) = -5 . . . . possible equivalent
- -7 -(-5) = -2 . . . . NOT equivalent
- 2(-1) -3(1) = -5 . . possible equivalent
Now, we can go back and check the other terms in the candidate expressions we have identified.
1. (-16x² +10x -3) +(4x² -29x -2) = (-16+4)x² +(10-29)x -5 = -12x² -19x -5 . . . OK
4. (2x² -11x -9) -(14x² +8x -4) = (2-14)x² +(-11-8)x -5 = -12x² -19x -5 . . . OK
6. 2(x -1) -3(4x² +7x +1) = -12x² +(2 -3·7)x -5 = -12x² -19x -5 . . . OK
All three of the "possible equivalent" expressions we identified on the first pass are fully equivalent to the target expression. These are your answer choices.
Answer:
Approximately 25p (please change to pounds by yourself I'm not European, sorry).
Ok so according to my research its 100 pence to one pound. Which will mean that 25p in pounds is £ 00.25
Step-by-step explanation:
<h3>let's say:</h3><h3>10p= <em>x</em></h3><h3>20p=<em> </em><em>y</em><em> </em></h3><h3>50p= <em>z</em><em> </em></h3><h3>'3 fewer 20p (<em>y</em><em>)</em><em> </em>coins than 10p (<em>x</em>) coins'</h3><h3>Therefore:</h3><h3>y-3=<em>x</em><em> </em></h3><h3>and <em>y</em>= <em>x</em>+3</h3><h3>'7 more 50p coins (<em>z</em>) than 10p coins (<em>x</em>)'</h3><h3>That is:</h3><h3><em>z</em>+7= <em>x</em></h3><h3><em>z</em><em>=</em><em> </em><em>x-7</em></h3><h3>'altogether are 61 coins'</h3><h3><em>x</em><em>+</em><em>y</em><em>+</em><em>z</em><em> </em><em>=</em><em> </em>61 </h3><h3>(substitute for y and z)</h3><h3><em>x</em><em> </em>+ <em>x</em><em> </em>+ 3 + <em>x</em><em> </em>- 7 = 61</h3><h3><em>x</em><em>+</em><em>x</em><em>+</em><em>x</em><em>+</em><em>3</em><em>-7</em><em> </em><em>=</em><em> </em>61</h3><h3>3<em>x</em><em> </em>- 4= 61</h3><h3>3<em>x</em>= 61 + 4</h3><h3>3<em>x</em>=65</h3><h3><em>x</em>= 65÷3</h3><h3><em>x</em>= (approximately) 21.6 </h3><h3>(Substitute <em>x</em><em> </em>in <em>y</em><em> </em>and <em>z</em>)</h3><h3><em>y</em><em> </em><em>=</em><em> </em><em>x</em><em>+</em>3</h3><h3><em>y</em><em> </em>= 21.6 + 3 = 24.6 (approximately 25)</h3><h3><em>z</em><em> </em><em>=</em><em> </em><em>x</em><em> </em>-7</h3><h3><em>z</em><em>=</em><em> </em>21.6-7= 14.6 (approximately 15)</h3><h3>y= 20p </h3><h3>y= 25p (approximately)</h3><h3 /><h3><u>Check</u><u> </u></h3><h3>x+y+z= ?</h3><h3>21.6 + 24.6 + 14.6= 60.8 (approximately 61)</h3>
(Sorry I couldn't change to pounds)
And I tried to explain as much as possible, you can ask if you're confused.
Answer:
the last one
Step-by-step explanation: