Answer:
Look below
Step-by-step explanation:
Ok, you got a Quadrilateral with the side lengths 6, 9, 9, 12
The shortest of B is 2
Find the scale factor of the A to B
6 -> 2
6/2 = 3
Scale factor is 3
Now divide all the sides by scale factor
6/3, 9/3, 9/3, 12/3 = 2, 3, 3, 4
Add them all together to get the perimeter
2+3+3+4 = 12
Perimeter of B is 12
Answer:28
Step-by-step explanation:
7+7+7+7
Answer:what equation
Step-by-step explanation:
Answer:
d =7.6
Step-by-step explanation:
![(-3,11) =(x_1,y_1)\\(-6,4)=(x_2,y_2)\\\\\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\\\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\\\\=\sqrt{\left(-6-\left(-3\right)\right)^2+\left(4-11\right)^2}\\= \sqrt{(-6+3)^2+(4-11)^2}\\ \\d= \sqrt{(-3)^2+(-7)^2} \\\\d = \sqrt{9+49}\\ \\d = \sqrt{58}\\\\d = 7.61577\\\\d =7.6](https://tex.z-dn.net/?f=%28-3%2C11%29%20%3D%28x_1%2Cy_1%29%5C%5C%28-6%2C4%29%3D%28x_2%2Cy_2%29%5C%5C%5C%5C%5Cmathrm%7BCompute%5C%3Athe%5C%3Adistance%5C%3Abetween%5C%3A%7D%5Cleft%28x_1%2C%5C%3Ay_1%5Cright%29%2C%5C%3A%5Cleft%28x_2%2C%5C%3Ay_2%5Cright%29%3A%5C%5C%5Cquad%20%5Csqrt%7B%5Cleft%28x_2-x_1%5Cright%29%5E2%2B%5Cleft%28y_2-y_1%5Cright%29%5E2%7D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cleft%28-6-%5Cleft%28-3%5Cright%29%5Cright%29%5E2%2B%5Cleft%284-11%5Cright%29%5E2%7D%5C%5C%3D%20%5Csqrt%7B%28-6%2B3%29%5E2%2B%284-11%29%5E2%7D%5C%5C%20%5C%5Cd%3D%20%5Csqrt%7B%28-3%29%5E2%2B%28-7%29%5E2%7D%20%5C%5C%5C%5Cd%20%3D%20%5Csqrt%7B9%2B49%7D%5C%5C%20%5C%5Cd%20%3D%20%5Csqrt%7B58%7D%5C%5C%5C%5Cd%20%3D%207.61577%5C%5C%5C%5Cd%20%3D7.6)
![5ab^{3} +7-3a^{2} b ^{2} +a^{3}b+10](https://tex.z-dn.net/?f=5ab%5E%7B3%7D%20%2B7-3a%5E%7B2%7D%20b%20%5E%7B2%7D%20%2Ba%5E%7B3%7Db%2B10)
can be simplified to by adding the 7 and 10 to get
![a^{3}b-3a^{2} b ^{2}+ 5ab^{3} + 17](https://tex.z-dn.net/?f=a%5E%7B3%7Db-3a%5E%7B2%7D%20b%20%5E%7B2%7D%2B%205ab%5E%7B3%7D%20%2B%2017)
.
![5ab^{3}+3a^{2}b^{2}+a^{3}b -10](https://tex.z-dn.net/?f=5ab%5E%7B3%7D%2B3a%5E%7B2%7Db%5E%7B2%7D%2Ba%5E%7B3%7Db%20-10)
cannot be simplified any more by combining like terms.
By distributing the 2b into the parentheses, you can simplify the expression:
![5ab^{3}+2b(3ab^{2})+a^{3}b-10\\ 5ab^{3}+6ab^{3}+a^{3}b-10\\ 11ab^{3}+a^{3}b-10](https://tex.z-dn.net/?f=5ab%5E%7B3%7D%2B2b%283ab%5E%7B2%7D%29%2Ba%5E%7B3%7Db-10%5C%5C%0A5ab%5E%7B3%7D%2B6ab%5E%7B3%7D%2Ba%5E%7B3%7Db-10%5C%5C%0A11ab%5E%7B3%7D%2Ba%5E%7B3%7Db-10)
Here you can just add:
![5a^{3}b^{3}+3a^{2}b^{2}+a^{3}b^{3}-10ab\\ 6a^{3}b^{3}+3a^{2}b^{2}-10ab](https://tex.z-dn.net/?f=5a%5E%7B3%7Db%5E%7B3%7D%2B3a%5E%7B2%7Db%5E%7B2%7D%2Ba%5E%7B3%7Db%5E%7B3%7D-10ab%5C%5C%0A6a%5E%7B3%7Db%5E%7B3%7D%2B3a%5E%7B2%7Db%5E%7B2%7D-10ab)
Thus, the only expression that cannot simplify any more using adding like terms is the second,
![5ab^{3}+3a^{2}b^{2}+a^{3}b -10](https://tex.z-dn.net/?f=5ab%5E%7B3%7D%2B3a%5E%7B2%7Db%5E%7B2%7D%2Ba%5E%7B3%7Db%20-10)
.